
15-150
Fall 2025

Dilsun Kaynar

LECTURE 14

Regular Expressions

Mid-semester feedback de-briefing
(57 responses)

Points to address:

• Exams: expectations, timing, and length

• Labs: more time and opportunities for
practice and walkthrough as a group

Today
• Regular expressions

• Regular languages

• Matcher

• Correctness

• Proof-directed debugging

• Termination

• Soundness and completeness

Motivating examples

www.<either cs or ece>.<either cmu or pitt>.edu

Validate URL:

grep "[A-Za-z]*"

Find each line that contains only letters and single spaces:

filename

Regular expressions are used widely in practice but the main ideas are due to the American
mathematician/logician Kleene, based on work done in the previous century(!) before the advent of
computers.

Hierarchy of Computer
Languages

Class of Languages Recognizer Applications

Unrestricted Turing machines General computational
questions

Context-sensitive Linear-bounded automata Some simple type-checking

Context-free Non-deterministic automata
with one stack Syntax checking

Regular Finite automata Tokenization

Hierarchy of Computer
Languages

Class of Languages Recognizer Applications

Unrestricted Turing machines General computational
questions

Context-sensitive Linear-bounded automata Some simple type-checking

Context-free Non-deterministic automata
with one stack Syntax checking

Regular Finite automata Tokenization

Excursions from my office
c means going to the coffee machine and coming back

p means going to the printer and coming back

m means going to a meeting and coming back

Succinct way to describe my excursions:

c*
(c+p)* m

Arbitrary number of trips to coffee machine
Arbitrary number of trips to coffee machine or printer,

followed by a meeting

Think of {c, p, m} as an alphabet

Expressions formed with letters of alphabet

{m, cm, pm, cpcccpm, …}

Language described by the expression

A finite automaton

final

b

b

a a

a, b

This automaton accepts all strings over the alphabet {a,b} that contain
at least two consecutive “a”s.

start

Not in the scope of 15-150!

Notation and Definitions
Σ is an alphabet of characters. (non-empty, finite)

Example: Σ = {a,b}

(In SML, #"a" : char)

Σ* means the set of all finite-length strings
over alphabet Σ.

Example: aabba in {a,b}*

(In SML, "aabba": string)

ε is the empty string, containing no characters.
(In SML, "": string)

Notation and Definitions

A language over Σ is a subset of Σ*.

Σ is an alphabet of characters. (non-empty, finite)

Example: {aa, ab}

Regular expressions
A regular expression over an alphabet Σ is one of the following:

a | 0 | 1 | r1 r2 | r1 + r2 | r*
letter in Σ special symbols concatenation alternation Kleene star

We use parantheses without regarding them as a part of the language.

L(r) : Language of a regular expression

L(a) = {a}

L(0) = {}

L(1) = {𝛆}

L(r1r2) = {s1s2 | s1 ∈ L(r1) and s2 ∈ L(r2)}

L(r1 + r2) = {s | s ∈ L(r1) or s ∈ L(r2)}

L(r*) = {s1 … sn | n ≥ 0 with si ∈ L(r) for 0 ≤ i ≤ n}

A language L is regular if L = L(r) for some regular expression r.

includes 𝛆 for n = 0
Alternatively,

L(r*) = {𝛆} ∪ {s1s2 | s1∈ L(r) and s2 ∈ L(r*)}

L(a) =

L(aa) =

L((a+b)*) =

L((a+b)*aa(a+b)*) =

L((a+1)(b+ba)*) =

Examples
Assume Σ = {a,b}

What is the language for each of the following regular expressions?
a

aa

(a+b)*

(a+b)*aa(a+b)*

(a+1)(b+ba)*

L(a) = {a}

L(0) = {}

L(1) = {𝛆}

L(r1 r2) = {s1 s2 | s1 ∈ L(r1) and s2 ∈ L(r2)}

L(r1 + r2) = {s | s ∈ L(r1) or s ∈ L(r2)}

L(r*) = {s1 … sn | n ≥ 0 with si ∈ L(r) for 0 ≤ i ≤ n}

Alternatively,

L(r*) = {𝛆} ∪ {s1s2 | s1∈ L(r) and s2 ∈ L(r*)}

set of strings with at least two consecutive “a”s.
set of strings without two consecutive “a”s.

Σ* (set of all strings over Σ)
{aa}

{a}

Examples
Assume Σ = {a,b}

All of the regular expressions below generate

the same language:

L(ab+b*ab)

L((1+b*)ab

L((1+bb*)ab)

L(b*ab)

L(b*ab+0)

All strings Σ* consisting of 0 or more “b”s

followed by ab (and nothing thereafter)

Motivating examples

www.<either cs or ece>.<either cmu or pitt>.edu

Validate URL:

www.(cs+ece).(cmu+pitt).edu

datatype regexp = Char of char
 | Zero
 | One
 | Times of regexp * regexp
 | Plus of regexp * regexp
 | Star of regexp

Representing regular expressions

a | 0 | 1 | r1 r2 | r1 + r2 | r*

Consider regular expression r = (a + ab) (a + b)

(* accept : regexp -> string -> bool

 REQUIRES: true
 ENSURES: (accept r s) ≅ true, if s ∈ L(r);
 (accept r s) ≅ false, otherwise.
*)

What does accept return when we apply it to r and "aba" ?

What is the language of r, i.e., what is L(r)? {aa,ab,aba,abb}

How do we split "aba"?

..

.+ .+

...a

.a

.a .b

.b

(a + ab) (a + b)aba

need to backtrack

string regular expression

..

.+ .+

...a

.a

.a .b

.b

(a + ab) (a + b)aba

(* accept : regexp -> string -> bool

 REQUIRES: true
 ENSURES: (accept r s) ≅ true, if s ∈ L(r);
 (accept r s) ≅ false, otherwise.
*)

(* match : regexp -> char list -> (char list -> bool) -> bool

 REQUIRES: k is total.
 ENSURES: (match r cs k) ≅ true,
 if cs can be split as cs ≅ p@s,
 with p representing a string in L(r)
 and k(s) ≅ true;
 (match r cs k) ≅ false, otherwise.
*)

accept and match

(* accept : regexp -> string -> bool

 REQUIRES: true
 ENSURES: (accept r s) ≅ true, if s ∈ L(r);
 (accept r s) ≅ false, otherwise.
*)

(* match : regexp -> char list -> (char list -> bool) -> bool

 REQUIRES: k is total.
 ENSURES: (match r cs k) ≅ true,
 if cs can be split as cs ≅ p@s,
 with p representing a string in L(r)
 and k(s) ≅ true;
 (match r cs k) ≅ false, otherwise.
*)

accept and match

fun accept r s = match r (String.explode s) List.null

fun match (Char(a)) cs k = (case cs of

 [] => false
| (c::cs') =>(a=c) andalso k(cs'))

| match (One) cs k = k(cs)

| match (Zero) _ _ = false

| match (Times (r1,r2)) cs k = match r1 cs (fn cs' => match r2 cs' k)

| match (Plus (r1,r2)) cs k = match r1 cs k orelse match r2 cs k

| match (Star(r)) cs k = k(cs) orelse match r cs (fn cs' => match Star(r) cs' k)

(match r cs k) ≅ true, if cs can be split as cs ≅ p@s
with p representing a string in L(r) and k(s) ≅ true
(match r cs k) ≅ false, otherwise

L(a) = {a}

L(0) = {}

L(1) = {𝛆}

L(r1 r2) = {s1 s2 | s1 ∈ L(r1) and s2 ∈ L(r2)}

L(r1 + r2) = {s | s ∈ L(r1) or s ∈ L(r2)}

L(r*) = {s1 … sn | n ≥ 0 with si ∈ L(r) for 0 ≤ i ≤ n}

Alternatively,

L(r*) = {𝛆} ∪ {s1s2 | s1∈ L(r) and s2 ∈ L(r*)}

match : regexp -> char list ->
 (char list -> bool) -> bool

fun match (Char(a)) cs k = (case cs of

 [] => false
| (c::cs') =>(a=c) andalso k(cs'))

| match (One) cs k = k(cs)

| match (Zero) _ _ = false

| match (Times (r1,r2)) cs k = match r1 cs (fn cs' => match r2 cs' k)

| match (Plus (r1,r2)) cs k = match r1 cs k orelse match r2 cs k

| match (Star(r)) cs k = k(cs) orelse match r cs (fn cs' => match Star(r) cs' k)

L(a) = {a}

L(0) = {}

L(1) = {𝛆}

L(r1 r2) = {s1 s2 | s1 ∈ L(r1) and s2 ∈ L(r2)}

L(r1 + r2) = {s | s ∈ L(r1) or s ∈ L(r2)}

L(r*) = {s1 … sn | n ≥ 0 with si ∈ L(r) for 0 ≤ i ≤ n}

Alternatively,

L(r*) = {𝛆} ∪ {s1s2 | s1∈ L(r) and s2 ∈ L(r*)}

may lead to an infinite loop

Example: match(Star(One)) ["#a"] List.null

List.null ["#a"] is false and match One cs k' will pass cs to k'

==> List.null ["#a"] orelse
match One [“#a"] (fn cs' => match (Star One) cs' List. null)

 L(One) = {[]}, List.null ["#a"] = false

==> match One [“#a"] (fn cs' => match (Star One) cs' List.null)

==> (fn cs' => match (Star One) cs' List.null) [“#a"]

==> match (Star One) [“#a"] List.null

match (Star One) ["#a"] List. null

Proof-directed debugging

 
For all values r, cs, k (of the correct type), with k total, match r cs k reduces to a value.

Theorem :

match (Star(r)) cs k = k(cs) orelse match r cs (fn cs' => match Star(r) cs' k)

Think about structural induction on r and the case

 
For all values r, cs, k (of the correct type), with k total, match r cs k reduces to a value.

Theorem :

match (Star(r)) cs k = k(cs) orelse match r cs (fn cs’ => match Star(r) cs' k)

In IH, we may assume match r cs (fn cs' => match Star(r) cs' k) reduces to
a value when (fn cs' => match Star(r) cs' k) is total. But do we know that it
is total?

Circular argument!

Think about structural induction on r and the case

Proof-directed debugging

Two ways to fix the problem

• (1) Change code to check cs' is a proper suffix of cs

• (2) …

| match (Star(r)) cs k = k(cs) orelse match r cs (fn cs' => match Star(r) cs' k)

fun match (Char(a)) cs k = (case cs of

 [] => false
| (c::cs') => (a=c) andalso k(cs'))

| match (One) cs k = k(cs)

| match (Zero) _ k = false

| match (Times (r1,r2)) cs k = match r1 cs (fn cs' => match r2 cs' k)

| match (Plus (r1,r2)) cs k = match r1 cs k orelse match r2 cs k

| match (Star(r)) cs k = k(cs) orelse match r cs

 (fn cs’ => not (cs = cs’) andalso match Star(r) cs’ k)

Two ways to fix the problem

• Change code

• Change specification to require that the input regular
expression be in standard form

• If Star(r) appears in the regular expression then 𝛆 is not
in the language of r.

| match (Star(r)) cs k = k(cs) orelse match r cs (fn cs' => match Star(r) cs' k)

match function
fun match (Char(a)) cs k = (case cs of

 [] => false
| (c::cs') =>(a=c) andalso k(cs'))

| match (One) cs k = k(cs)
| match (Zero) _ k = false

| match (Times (r1,r2)) cs k = match r1 cs (fn cs' => match r2 cs' k)

| match (Plus (r1,r2)) cs k = match r1 cs k orelse match r2 cs k

| match (Star(r)) cs k = k(cs) orelse match r cs (fn cs' => match Star(r) cs' k)

A regular expression r is in standard form if and only if for any

subexpression Star(r') of r, L(r') does not contain the empty string.

Or require that the input regular expression be in standard form

Sketch of a Proof of
Correctness

• Prove termination: show that (match r cs k) returns a
value for all arguments r, cs, k satisfying REQUIRES (We
will assume termination in the rest of the proof).

• Prove soundness and completeness (We will do this
assuming termination and write out one case).

Soundness and Completenes
(assuming termination)

 ENSURES: (match r cs k) ≅ true, if cs ≅ p@s,
 with p ∈ L(r) and k(s) ≅ true;
 (match r cs k) ≅ false, otherwise

Given termination, we can rephrase the spec as follows:

 ENSURES: (match r cs k) ≅ true if and only if there exist p, s such that
 cs ≅ p@s, p ∈ L(r) and k(s) ≅ true

Proof: By structural induction on r

Base cases: Zero, One, Char (a) for every a: char

Inductive cases: Plus (r1, r2), Times (r1,r2), Star (r)

We are assuming termination as a lemma.

Theorem:

For all values r: regexp, cs: char list, k: char list -> bool, with k total

(match r cs k) ≅ true
if and only if

 there exist p, s such that
 cs ≅ p@s, p ∈ L(r) and k(s) ≅ true

Inductive case: r = Plus (r1, r2)
IH: For i = 1,2, for all values cs: char list, k: char list -> bool, with

k total (match ri cs k) ≅ true if and only if there exist p, s such
that cs ≅ p@s, p ∈ L(ri) and k(s) ≅ true

for some r1 and r2
We are assuming termination as a lemma.

NTS: For all values cs: char list, k: char list -> bool, with k total
(match (Plus (r1, r2)) cs k) ≅ true if and only if there exist p, s
such that cs ≅ p@s, p ∈ L(Plus (r1, r2)) and k(s) ≅ true.

Theorem:

For all values r: regexp, cs: char list, k: char list -> bool, with k total

(match r cs k) ≅ true
if and only if

 there exist p, s such that
 cs ≅ p@s, p ∈ L(r) and k(s) ≅ true

IH:

NTS:

(Part 1): Suppose (match (Plus (r1, r2)) cs k) ≅ true
NTS: There exist p, s such that
 such that cs ≅ p@s, p ∈ L(Plus (r1, r2)) and k(s) ≅ true.
true ≅ (match (Plus (r1, r2)) cs k)

≅ (match r1 cs k) orelse (match r2 cs k) [Plus]
One or both arguments to orelse must be true. Let’s suppose the first one.
By IH for r1 there exist p, s such that cs ≅ p@s, p ∈ L(r1) and k(s) ≅ true.

p ∈ L(Plus (r1, r2)) by language definition for Plus.

Soundness
Inductive case: r = Plus (r1, r2) for some r1 and r2

For i = 1,2, for all values cs: char list, k: char list -> bool, with
k total (match ri cs k) ≅ true if and only if there exist p, s such
that cs ≅ p@s, p ∈ L(ri) and k(s) ≅ true

For all values cs: char list, k: char list -> bool, with k total
(match (Plus (r1, r2)) cs k)) ≅ true if and only if there exist p, s
such that cs ≅ p@s, p ∈ L(Plus (r1, r2)) and k(s) ≅ true.

[Assumption]

IH:

NTS:

(Part 2): Suppose cs ≅ p@s, p ∈ L(Plus (r1, r2)) and k(s) ≅ true.
NTS:

By supposition, there exist p, s such that cs ≅ p@s, p ∈ L(Plus (r1, r2))

 and k(s) ≅ true. By language definition for Plus, p ∈ L(r1) and/or p ∈ L(r2).

Completeness
Inductive case: r = Plus (r1, r2) for some r1 and r2

For i = 1,2, for all values cs: char list, k: char list -> bool, with
k total (match ri cs k) ≅ true if and only if there exist p, s such
that cs ≅ p@s, p ∈ L(ri) and k(s) ≅ true

For all values cs: char list, k: char list -> bool, with k total
(match (Plus (r1, r2)) cs k) ≅ true if and only if there exist p, s
such that cs ≅ p@s, p ∈ L(Plus (r1, r2)) and k(s) ≅ true.

(match (Plus (r1, r2)) cs k) ≅ true

(match (Plus (r1, r2)) cs k)
≅ (match r1 cs k) orelse (match r2 cs k) [Plus]

If p ∈ L(r1), then (match r1 cs k) ≅ true, by IH for r1.

Otherwise, (match r1 cs k) ≅ false by termination, p ∈ L(r2),
and (match r2 cs k) ≅ true by IH for r2.

