| 5-150
Fall 2025

Dilsun Kaynar

LECTURE 14

Regular Expressions

Mid-semester feedback de-briefing
(57 responses)

Points to address:
® Exams: expectations, timing, and length

® Labs: more time and opportunities for
practice and walkthrough as a group

Today

Regular expressions
Regular languages

Matcher

Correctness

* Proof-directed debugging
e Jermination

e Soundness and completeness

Motivating examples

Validate URL.:

<www.<either cs or ece>.<either cmu or pitt>.edu >

Find each line that contains only letters and single spaces:

grep("[A-Za-z |*") filename

Regular expressions are used widely in practice but the main ideas are due to the American
mathematician/logician Kleene, based on work done in the previous century(!) before the advent of
computers.

Hierarchy of Computer
Languages

Class of Languages Recognizer Applications

General computational
questions

Unrestricted Turing machines

Context-sensitive Linear-bounded automata Some simple type-checking

Non-deterministi t t :
Context-free on-de SrMINISHE attomata Syntax checking
with one stack

Regular Finite automata Tokenization

Hierarchy of Computer
Languages

Class of Languages Recognizer Applications

General computational

Unrestricted Turing machines .
questions

Context-sensitive Linear-bounded automata Some simple type-checking

Context-free Non—detgrm|n|st|c automata Syntax checking
with one stack

Regular Finite automata Tokenization

Excursions from my office

¢ means going to the coffee machine and coming back

p means going to the printer and coming back

M means going to a meeting and coming back

Think of {c, p, m} as an alphabet

Succinct way to describe my excursions:

c* Arbitrary number of trips to coffee machine
(c+p)* m Arbitrary number of trips to coffee machine or printer,

A\ followed by a meeting {m, cm, pm, cpcccpm, ...}

Expressions formed with letters of alphabet Language described by the expression

Not in the scope of 15-150!

b a, b

4, a
R E

b

This automaton accepts all strings over the alphabet {a,b} that contain

at least two consecutive “a’”s.

Notation and Definitions

2 Is an alphabet of characters. (hon-empty, finite)

Example: 2 = {a,b}
(In SML, #"a" : char)

2* means the set of all finite-length strings
over alphabet 2.

Example: aabba in {a,b}"
(In SML, "aabba": string)

e Is the empty string, containing no characters.
(In SML, ™: string)

Notation and Definitions

2 Is an alphabet of characters. (hon-empty, finite)

A language over 2 is a subset of 2*.

Example: {aa, ab}

Regular expressions

A regular expression over an alphabet 2 is one of the following:

| O | riro |{ri+rrf|r

a | 1

letter in 2 special symbols concatenation alternation Kleene star

We use parantheses without regarding them as a part of the language.

L(r) : Language of a regular expression

L(a) = {a}
LO) = ¢
L(1) = {&}

L(r1r2) = {s1s2 | s1 € L(r1) and sz € L(r2)}
L(r1 + r2) ={s | s € L(r1) or s € L(r2)}

L(r) = {s1 ... sn | n = 0 with sje L(r) for0 <i < n}

| * Alternatively,
Includes e forn =0
L(r*) = {e} u {s1s2 | s1€ L(r) and s2 € L(r*)}

A language L is regular if L = L(r) for some regular expression r.

L(a) = {a}

L) = {}

L(1) = {e}

L(r1 r2) = {s1 s2 | s1 € L(r1) and s2 € L(r2)}
Xal I lp eS L(r1 + r2) ={s | s € L(r1) or s € L(r2)}

L(r) ={s1 ... sn| n =0 with sie L(r) for0 <i<n}

>

ternatively,
L(r*) = {e} u {s1s2 | s1€ L(r) and s2 € L(r*)}

| — U

Assume 2 = {a,b}
What is the language for each of the following regular expressions?

(a) ={a}

_(aa) = {aa}

_((a+b)") = 2* (set of all strings over 2)

_((a+b)*aa(a+b)*) = set of strings with at least two consecutive “a”s.
((a+1)(b+ba)*) = set of strings without two consecutive “a’s.

Examples

Assume 2 = {a,b}
All of the regular expressions below generate
the same language:

L(ab+b*ab)
L((1+b*)ab
L((1+bb*)ab)
L(b*ab)
L(b*ab+0)

All strings 2* consisting of O or more “b”s
followed by ab (and nothing thereafter)

Motivating examples

Validate URL.:

<www.<either cs or ece>.<either cmu or pitt>.edu >

www.(cs+ece).(cmu+pitt).edu

Representing regular expressions

alO0O|1]|rr|lrn+r|r

datatype regexp = Char of char

Zero

One

Times of regexp * regexp
Plus of regexp * regexp
Star of regexp

(* accept : regexp —> string -> bool

REQUIRES: true
ENSURES: (acceptrs) = true, if s e L(r);

(accept r s) = false, otherwise.

Consider regular expression r = (a + ab) (a + b)
What is the language of r, i.e., what is L(r)? {aa,ab,aba,abb}
What does accept return when we apply it to r and "aba" ?

How do we split "aba"?

string

ab

@

regular expression

(a + ab) (a + b)

@ ®

@ ®

need to backtrack

ab

7R

(a + ab) (2 + b)

@/@\O@

@ O

accept and match

(* accept : regexp -> string -> bool

REQUIRES: true
ENSURES: (acceptrs) = true, if s € L(r);

(accept r s) = false, otherwise.

(* match : regexp -> char list -> (char list -> bool) -> bool

REQUIRES: k is total.
ENSURES: (match r cs k) = true,

if cs can be split as cs = p@s,
with p representing a string in L(r)
and k(s) = true;

(match r cs k) = false, otherwise.

accept and match

(* accept : regexp -> string -> bool

REQUIRES: true
ENSURES: (acceptrs) = true, if s € L(r);

(accept r s) = false, otherwise.

(* match : regexp -> char list -> (char list -> bool) -> bool

REQUIRES: k is total.
ENSURES: (match r cs k) = true,

if cs can be split as cs = p@s,
with p representing a string in L(r)
and k(s) = true;

(match r cs k) = false, otherwise.

ol
5)

fun accept r s = match r (String.explode s) List.null

match : regexp -> char list ->

(char list -=> bool) -> bool ri r2) = {s1 s2 | 81 € L(r1) and sz € L(r2)}
rn+r)={s|sel(r)ors e L(r)}
r)={s1...sn|Nn=0with sie L(r)for0 <i<n}

Alternatively,
L(r*) = {e} u {s1s2 | s1€ L(r) and s2 € L(r*)}

—— S

fun match (Char(a)) cs k = (case cs of

[] => false
| (c::cs’) => (a=c¢) andalso k(cs'))
match (Zero) = false

match (One) cs k = k(cs)
match (Times (rl1,r2)) cs k = match rl cs (fn ¢cs' => match r2 cs' k)

match (Plus (r1,r2)) cs k = match rl cs k orelse match r2 cs k

match (Star(r)) cs k = k(cs) orelse match r ¢cs (fn cs' => match Star(r) ¢cs' k)

(match r cs k) = true, if cs can be split as cs = p@s

with p representing a string in L(r) and k(s) = true
(match r cs k) = false, otherwise

r1 r2) = {s1 s2 | s1 € L(r1) and sz € L(r2)}

ri+r2) ={s|selL(r)ors e L(r)}
r)={s1...sn|Nn=0with sie L(r)for0 <i<n}
Alternatively,

L(r*) = {e} u {s1s2 | s1€ L(r) and s2 € L(r*)}

| TT——— P

fun match (Char(a)) cs k = (case cs of

[] => false
| (c::cs’) => (a=c¢) andalso k(cs'))
match (Zero) = false

match (One) cs k = k(cs)
match (Times (rl1,r2)) cs k = match rl cs (fn ¢cs' => match r2 cs' k)

match (Plus (r1,r2)) cs k = match rl cs k orelse match r2 cs k

match (Star(r)) cs k = k(cs) orelse match r ¢s (fn cs' => match Star(r) cs' k)

may lead to an infinite loop

Example: match(Star(One)) ["#a"] List.null

List.null ["#a"] is false and match One cs k' will pass cs to k'

L(One) = {[]}, List.null ['#a"] = false

match (Star One) ["#a"] List. null

==> List.null ["#a"] orelse

match One [“#a"] (fn ¢s' => match (Star One) c¢s' List. null)

==> match One [“#a"] (fn cs' => match (Star One) cs' List.null)

==> (fn cs' => match (Star One) cs' List.null) ["#a"]

==> match (Star One) ["#a"] List.null

Proof-directed debugging

Theorem::

For all values r, cs, k (of the correct type), with k total, match r cs k reduces to a value.

Think about structural induction on r and the case

match (Star(r)) cs k = k(cs) orelse match r cs (fn ¢s' => match Star(r) cs' k)

Proof-directed debugging

Theorem::

For all values r, cs, k (of the correct type), with k total, match r cs k reduces to a value.

Think about structural induction on r and the case

match (Star(r)) cs k = k(cs) orelse match r ¢s (fn cs’ => match Star(r) cs' k)

In IH, we may assume match r ¢s (fn ¢s' => match Star(r) cs' k) reduces to
a value when (fn c¢s' => match Star(r) cs' k) is total. But do we know that it
is total?

Circular argument!

| match (Star(r)) cs k = k(cs) orelse match r ¢s (fn c¢s' => match Star(r) cs' k)

Two ways to fix the problem

* (1) Change code to check cs' is a proper suffix of cs

¢ (2)...

fun match (Char(a)) cs k = (case cs of

[] => false
| (c::cs') => (a=c) andalso k(cs'))

match (One) cs k= k(cs)
match (Zero) _k = false
match (Times (r1,r2)) cs k = match r1 cs (fn cs' => match r2 cs' k)

match (Plus (r1,r2)) cs k = match r1 cs k orelse match r2 cs k

match (Star(r)) cs k = k(cs) orelse match r cs
(fn cs’ => not (cs = cs’) andalso match Star(r) cs’ k)

| match (Star(r)) cs k = k(cs) orelse match r ¢s (fn c¢s' => match Star(r) cs' k)

Two ways to fix the problem

e Change code

 Change specification to require that the input regular
expression be in standard form

o If Star(r) appears in the regular expression then € is not
in the language of .

match function

fun match (Char(a)) cs k = (case c¢s of

[] => false
| (c::cs') => (a=c) andalso k(cs'))

match (Zero) _k = false
match (One) cs k = k(cs)
match (Times (rl1,r2)) cs k = match rl cs (fn cs' => match r2 cs' k)

match (Plus (r1,r2)) cs k = match rl cs k orelse match r2 cs k

match (Star(r)) cs k = k(cs) orelse match r cs (fn cs' => match Star(r) cs' k)

Or require that the input regular expression be in standard form

A regular expression r is in standard form if and only if for any
subexpression Star(r') of r, L(r') does not contain the empty string.

Sketch of a Proof of
Correctness

 Prove termination: show that (match r cs k) returns a
value for all arguments r, cs, k satisfying REQUIRES (We
will assume termination in the rest of the proof).

* Prove soundness and completeness (We will do this
assuming termination and write out one case).

Soundness and Completenes
(assuming termination)

ENSURES: (match r cs k) = true, if cs = p@s,
with p € L(r) and k(s) = true;
(match r cs k) = false, otherwise

Given termination, we can rephrase the spec as follows:

ENSURES: (match r cs k) = true if and only if there exist p, s such that
cs = p@s, p € L(r) and k(s) = true

Theorem:
For all values r: regexp, cs: char list, k: char list -=> bool, with k total
(match r ¢cs k) = true

if and only if
there exist p, s such that
p@s, p € L(r) and k(s) = true

I

CS

We are assuming termination as a lemma.

Proof: By structural induction on r

Base cases: Zero, One, Char (a) for every a: char

Inductive cases: Plus (r1, r2), Times (r1,r2), Star (r)

Theorem:
For all values r: regexp, cs: char list, k: char list -=> bool, with k total
(match r ¢cs k) = true

if and only if
there exist p, s such that
p@s, p € L(r) and k(s) = true

I

CS

We are assuming termination as a lemma.
Inductive case: r = Plus (ri1, r2) for someri andro

IH: Fori=1,2, for all values cs: char list, k: char list => bool, with
k total (match ri cs k) = true if and only if there exist p, s such

that cs = p@s, p € L(ri) and k(s) = true

NTS: For all values cs: char list, k: char list => bool, with k total
(match (Plus (r1, r2)) cs k) = true if and only if there exist p, s

such that cs = p@s, p € L(Plus (r1, r2)) and k(s) = true.

Soundness
Inductive case: r = Plus (r1, r2) for some ri and ro

IH: Fori=1,2, forall values cs: char list, k: char list —=> bool, with
k total (match ri cs k) = true if and only if there exist p, s such

that cs = p@s, p € L(ri) and k(s) = true

NTS: For all values cs: char list, k: char list -=> bool, with k total
(match (Plus (r1, r2)) cs k)) = true if and only if there exist p, s

such that cs = p@s, p € L(Plus (r1, r2)) and k(s) = true.

(Part 1): Suppose (match (Plus (r1, r2)) cs k) = true

NTS: There exist p, s such that
such that cs = p@s, p € L(Plus (r1, r2)) and k(s) = true.

true = (match (Plus (r1, r2)) cs k) [Assumption]

= (match r1 cs k) orelse (match racs k) [Plus]
One or both arguments to orelse must be true. Let’s suppose the first one.

By IH for r1 there exist p, s such that cs = p@s, p € L(r1) and k(s) = true.
p € L(Plus (r1, r2)) by language definition for Plus.

Completeness
Inductive case: r = Plus (r1, r2) for some ri and r»

IH: Fori=1,2, forall values cs: char list, k: char list —=> bool, with
k total (match ri cs k) = true if and only if there exist p, s such

that cs = p@s, p € L(ri) and k(s) = true

NTS: For all values cs: char list, k: char list => bool, with k total
(match (Plus (r1, r2)) cs k) = true if and only if there exist p, s

such that cs = p@s, p € L(Plus (r1, r2)) and k(s) = true.

(Part 2): Suppose cs = p@s, p € L(Plus (r1, r2)) and k(s) = true.
NTS: (match (Plus (r1, r2)) cs k) = true

(match (Plus (r1, r2)) cs k)

= (match r1 cs k) orelse (match r2cs k) [Plus]
By supposition, there exist p, s such that cs = p@s, p € L(Plus (r1, r2))
and k(s) = true. By language definition for Plus, p € L(r1) and/or p € L(r2).
If p € L(r1), then (match r1 cs k) = true, by IH for r1.
Otherwise, (match ri cs k) = false by termination, p € L(r2),
and (match r2 cs k) = true by IH for rz.

