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Mid-semester feedback de-briefing
(57 responses)

Points to address:
® Exams: expectations, timing, and length

® Labs: more time and opportunities for
practice and walkthrough as a group



Today

Regular expressions
Regular languages

Matcher

Correctness

* Proof-directed debugging
e Jermination

e Soundness and completeness



Motivating examples

Validate URL.:

<www.<either cs or ece>.<either cmu or pitt>.edu >

Find each line that contains only letters and single spaces:

grep("[A-Za-z |*") filename

Regular expressions are used widely in practice but the main ideas are due to the American
mathematician/logician Kleene, based on work done in the previous century(!) before the advent of
computers.
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Excursions from my office

¢ means going to the coffee machine and coming back

p means going to the printer and coming back

M means going to a meeting and coming back

Think of {c, p, m} as an alphabet

Succinct way to describe my excursions:

c* Arbitrary number of trips to coffee machine
(c+p)* m Arbitrary number of trips to coffee machine or printer,

A\ followed by a meeting {m, cm, pm, cpcccpm, ...}

Expressions formed with letters of alphabet Language described by the expression



Not in the scope of 15-150!

b a, b

4, a
R E

b

This automaton accepts all strings over the alphabet {a,b} that contain

at least two consecutive “a’”s.



Notation and Definitions

2 Is an alphabet of characters. (hon-empty, finite)

Example: 2 = {a,b}
(In SML, #"a" : char)

2* means the set of all finite-length strings
over alphabet 2.

Example: aabba in {a,b}"
(In SML, "aabba": string)

e Is the empty string, containing no characters.
(In SML, ™: string)



Notation and Definitions

2 Is an alphabet of characters. (hon-empty, finite)

A language over 2 is a subset of 2*.

Example: {aa, ab}



Regular expressions

A regular expression over an alphabet 2 is one of the following:

| O | riro |{ri+rrf|r

a | 1

letter in 2 special symbols concatenation alternation Kleene star

We use parantheses without regarding them as a part of the language.



L(r) : Language of a regular expression

L(a) = {a}
LO) = ¢
L(1) = {&}

L(r1r2) = {s1s2 | s1 € L(r1) and sz € L(r2)}
L(r1 + r2) ={s | s € L(r1) or s € L(r2)}

L(r) = {s1 ... sn | n = 0 with sje L(r) for0 <i < n}

| * Alternatively,
Includes e forn =0
L(r*) = {e} u {s1s2 | s1€ L(r) and s2 € L(r*)}

A language L is regular if L = L(r) for some regular expression r.



L(a) = {a}

L) = {}

L(1) = {e}

L(r1 r2) = {s1 s2 | s1 € L(r1) and s2 € L(r2)}
Xal I lp eS L(r1 + r2) ={s | s € L(r1) or s € L(r2)}

L(r) ={s1 ... sn| n =0 with sie L(r) for0 <i<n}

>

ternatively,
L(r*) = {e} u {s1s2 | s1€ L(r) and s2 € L(r*)}

| — U

Assume 2 = {a,b}
What is the language for each of the following regular expressions?

(a) ={a}

_(aa) = {aa}

_((a+b)") = 2* (set of all strings over 2)

_((a+b)*aa(a+b)*) = set of strings with at least two consecutive “a”s.
((a+1)(b+ba)*) = set of strings without two consecutive “a’s.




Examples

Assume 2 = {a,b}
All of the regular expressions below generate
the same language:

L(ab+b*ab)
L((1+b*)ab
L((1+bb*)ab)
L(b*ab)
L(b*ab+0)

All strings 2* consisting of O or more “b”s
followed by ab (and nothing thereafter)



Motivating examples

Validate URL.:

<www.<either cs or ece>.<either cmu or pitt>.edu >

www.(cs+ece).(cmu+pitt).edu



Representing regular expressions

alO0O|1]|rr|lrn+r|r

datatype regexp = Char of char

Zero

One

Times of regexp * regexp
Plus of regexp * regexp
Star of regexp




(* accept : regexp —> string -> bool

REQUIRES: true
ENSURES: (acceptrs) = true, if s e L(r);

(accept r s) = false, otherwise.

Consider regular expression r = (a + ab) (a + b)
What is the language of r, i.e., what is L(r)? {aa,ab,aba,abb}
What does accept return when we apply it to r and "aba" ?

How do we split "aba"?



string

ab

@

regular expression

(a + ab) (a + b)

@ ®

@ ®

need to backtrack



ab

7R

(a + ab) (2 + b)

@/@\O@

@ O



accept and match

(* accept : regexp -> string -> bool

REQUIRES: true
ENSURES: (acceptrs) = true, if s € L(r);

(accept r s) = false, otherwise.

(* match : regexp -> char list -> (char list -> bool) -> bool

REQUIRES: k is total.
ENSURES: (match r cs k) = true,

if cs can be split as cs = p@s,
with p representing a string in L(r)
and k(s) = true;

(match r cs k) = false, otherwise.



accept and match

(* accept : regexp -> string -> bool

REQUIRES: true
ENSURES: (acceptrs) = true, if s € L(r);

(accept r s) = false, otherwise.

(* match : regexp -> char list -> (char list -> bool) -> bool

REQUIRES: k is total.
ENSURES: (match r cs k) = true,

if cs can be split as cs = p@s,
with p representing a string in L(r)
and k(s) = true;

(match r cs k) = false, otherwise.

ol
5 )

fun accept r s = match r (String.explode s) List.null



match : regexp -> char list ->

(char list -=> bool) -> bool ri r2) = {s1 s2 | 81 € L(r1) and sz € L(r2)}
rn+r)={s|sel(r)ors e L(r)}
r)={s1...sn|Nn=0with sie L(r)for0 <i<n}

Alternatively,
L(r*) = {e} u {s1s2 | s1€ L(r) and s2 € L(r*)}

—— S

fun match (Char(a)) cs k = (case cs of

[] => false
| (c::cs’) => (a=c¢) andalso k(cs'))
match (Zero) = false

match (One) cs k = k(cs)
match (Times (rl1,r2)) cs k = match rl cs (fn ¢cs' => match r2 cs' k)

match (Plus (r1,r2)) cs k = match rl cs k orelse match r2 cs k

match (Star(r)) cs k = k(cs) orelse match r ¢cs (fn cs' => match Star(r) ¢cs' k)

(match r cs k) = true, if cs can be split as cs = p@s

with p representing a string in L(r) and k(s) = true
(match r cs k) = false, otherwise



r1 r2) = {s1 s2 | s1 € L(r1) and sz € L(r2)}

ri+r2) ={s|selL(r)ors e L(r)}
r)={s1...sn|Nn=0with sie L(r)for0 <i<n}
Alternatively,

L(r*) = {e} u {s1s2 | s1€ L(r) and s2 € L(r*)}

| TT——— P

fun match (Char(a)) cs k = (case cs of

[] => false
| (c::cs’) => (a=c¢) andalso k(cs'))
match (Zero) = false

match (One) cs k = k(cs)
match (Times (rl1,r2)) cs k = match rl cs (fn ¢cs' => match r2 cs' k)

match (Plus (r1,r2)) cs k = match rl cs k orelse match r2 cs k

match (Star(r)) cs k = k(cs) orelse match r ¢s (fn cs' => match Star(r) cs' k)

may lead to an infinite loop

Example: match(Star(One)) ["#a"] List.null

List.null ["#a"] is false and match One cs k' will pass cs to k'



L(One) = {[ ]}, List.null ['#a"] = false

match (Star One) ["#a"] List. null

==> List.null ["#a"] orelse

match One [“#a"] (fn ¢s' => match (Star One) c¢s' List. null)

==> match One [“#a"] (fn cs' => match (Star One) cs' List.null)

==> (fn cs' => match (Star One) cs' List.null) ["#a"]

==> match (Star One) ["#a"] List.null



Proof-directed debugging

Theorem::

For all values r, cs, k (of the correct type), with k total, match r cs k reduces to a value.

Think about structural induction on r and the case

match (Star(r)) cs k = k(cs) orelse match r cs (fn ¢s' => match Star(r) cs' k)



Proof-directed debugging

Theorem::

For all values r, cs, k (of the correct type), with k total, match r cs k reduces to a value.

Think about structural induction on r and the case

match (Star(r)) cs k = k(cs) orelse match r ¢s (fn cs’ => match Star(r) cs' k)

In IH, we may assume match r ¢s (fn ¢s' => match Star(r) cs' k) reduces to
a value when (fn c¢s' => match Star(r) cs' k) is total. But do we know that it
is total?

Circular argument!



| match (Star(r)) cs k = k(cs) orelse match r ¢s (fn c¢s' => match Star(r) cs' k)

Two ways to fix the problem

* (1) Change code to check cs' is a proper suffix of cs

¢ (2)...



fun match (Char(a)) cs k = (case cs of

[ ] => false
| (c::cs') => (a=c) andalso k(cs'))

match (One) cs k=  k(cs)
match (Zero) _k = false
match (Times (r1,r2)) cs k = match r1 cs (fn cs' => match r2 cs' k)

match (Plus (r1,r2)) cs k = match r1 cs k orelse match r2 cs k

match (Star(r)) cs k = k(cs) orelse match r cs
(fn cs’ => not (cs = cs’) andalso match Star(r) cs’ k)



| match (Star(r)) cs k = k(cs) orelse match r ¢s (fn c¢s' => match Star(r) cs' k)

Two ways to fix the problem

e Change code

 Change specification to require that the input regular
expression be in standard form

o If Star(r) appears in the regular expression then € is not
in the language of .



match function

fun match (Char(a)) cs k = (case c¢s of

[] => false
| (c::cs') => (a=c) andalso k(cs'))

match (Zero) _k = false
match (One) cs k = k(cs)
match (Times (rl1,r2)) cs k = match rl cs (fn cs' => match r2 cs' k)

match (Plus (r1,r2)) cs k = match rl cs k orelse match r2 cs k

match (Star(r)) cs k = k(cs) orelse match r cs (fn cs' => match Star(r) cs' k)

Or require that the input regular expression be in standard form

A regular expression r is in standard form if and only if for any
subexpression Star(r') of r, L(r') does not contain the empty string.



Sketch of a Proof of
Correctness

 Prove termination: show that (match r cs k) returns a
value for all arguments r, cs, k satisfying REQUIRES (We
will assume termination in the rest of the proof).

* Prove soundness and completeness (We will do this
assuming termination and write out one case).



Soundness and Completenes
(assuming termination)

ENSURES: (match r cs k) = true, if cs = p@s,
with p € L(r) and k(s) = true;
(match r cs k) = false, otherwise

Given termination, we can rephrase the spec as follows:

ENSURES: (match r cs k) = true if and only if there exist p, s such that
cs = p@s, p € L(r) and k(s) = true




Theorem:
For all values r: regexp, cs: char list, k: char list -=> bool, with k total
(match r ¢cs k) = true

if and only if
there exist p, s such that
p@s, p € L(r) and k(s) = true

I

CS

We are assuming termination as a lemma.

Proof: By structural induction on r

Base cases: Zero, One, Char (a) for every a: char

Inductive cases: Plus (r1, r2), Times (r1,r2), Star (r)



Theorem:
For all values r: regexp, cs: char list, k: char list -=> bool, with k total
(match r ¢cs k) = true

if and only if
there exist p, s such that
p@s, p € L(r) and k(s) = true

I

CS

We are assuming termination as a lemma.
Inductive case: r = Plus (ri1, r2) for someri andro

IH: Fori=1,2, for all values cs: char list, k: char list => bool, with
k total (match ri cs k) = true if and only if there exist p, s such

that cs = p@s, p € L(ri) and k(s) = true

NTS: For all values cs: char list, k: char list => bool, with k total
(match (Plus (r1, r2)) cs k) = true if and only if there exist p, s

such that cs = p@s, p € L(Plus (r1, r2)) and k(s) = true.



Soundness
Inductive case: r = Plus (r1, r2) for some ri and ro

IH: Fori=1,2, forall values cs: char list, k: char list —=> bool, with
k total (match ri cs k) = true if and only if there exist p, s such

that cs = p@s, p € L(ri) and k(s) = true

NTS: For all values cs: char list, k: char list -=> bool, with k total
(match (Plus (r1, r2)) cs k)) = true if and only if there exist p, s

such that cs = p@s, p € L(Plus (r1, r2)) and k(s) = true.

(Part 1): Suppose (match (Plus (r1, r2)) cs k) = true

NTS: There exist p, s such that
such that cs = p@s, p € L(Plus (r1, r2)) and k(s) = true.

true = (match (Plus (r1, r2)) cs k) [Assumption]

= (match r1 cs k) orelse (match racs k)  [Plus]
One or both arguments to orelse must be true. Let’s suppose the first one.

By IH for r1 there exist p, s such that cs = p@s, p € L(r1) and k(s) = true.
p € L(Plus (r1, r2)) by language definition for Plus.



Completeness
Inductive case: r = Plus (r1, r2) for some ri and r»

IH: Fori=1,2, forall values cs: char list, k: char list —=> bool, with
k total (match ri cs k) = true if and only if there exist p, s such

that cs = p@s, p € L(ri) and k(s) = true

NTS: For all values cs: char list, k: char list => bool, with k total
(match (Plus (r1, r2)) cs k) = true if and only if there exist p, s

such that cs = p@s, p € L(Plus (r1, r2)) and k(s) = true.

(Part 2): Suppose cs = p@s, p € L(Plus (r1, r2)) and k(s) = true.
NTS: (match (Plus (r1, r2)) cs k) = true

(match (Plus (r1, r2)) cs k)

= (match r1 cs k) orelse (match r2cs k) [Plus]
By supposition, there exist p, s such that cs = p@s, p € L(Plus (r1, r2))
and k(s) = true. By language definition for Plus, p € L(r1) and/or p € L(r2).
If p € L(r1), then (match r1 cs k) = true, by IH for r1.
Otherwise, (match ri cs k) = false by termination, p € L(r2),
and (match r2 cs k) = true by IH for rz.



