15-150 Fall 2025

Dilsun Kaynar

LECTURE 14

Regular Expressions

Mid-semester feedback de-briefing (57 responses)

Points to address:

- Exams: expectations, timing, and length
- Labs: more time and opportunities for practice and walkthrough as a group

Today

- Regular expressions
- Regular languages
- Matcher
- Correctness
 - Proof-directed debugging
 - Termination
 - Soundness and completeness

Motivating examples

Validate URL:

www.<either cs or ece>.<either cmu or pitt>.edu

Find each line that contains only letters and single spaces:

Regular expressions are used widely in practice but the main ideas are due to the American mathematician/logician Kleene, based on work done in the previous century(!) before the advent of computers.

Hierarchy of Computer Languages

Class of Languages	Recognizer	Applications
Unrestricted	Turing machines	General computational questions
Context-sensitive	Linear-bounded automata	Some simple type-checking
Context-free	Non-deterministic automata with one stack	Syntax checking
Regular	Finite automata	Tokenization

Hierarchy of Computer Languages

Class of Languages	Recognizer	Applications
Unrestricted	Turing machines	General computational questions
Context-sensitive	Linear-bounded automata	Some simple type-checking
Context-free	Non-deterministic automata with one stack	Syntax checking
Regular	Finite automata	Tokenization

Excursions from my office

c means going to the coffee machine and coming back
p means going to the printer and coming back
m means going to a meeting and coming back

Think of {c, p, m} as an alphabet

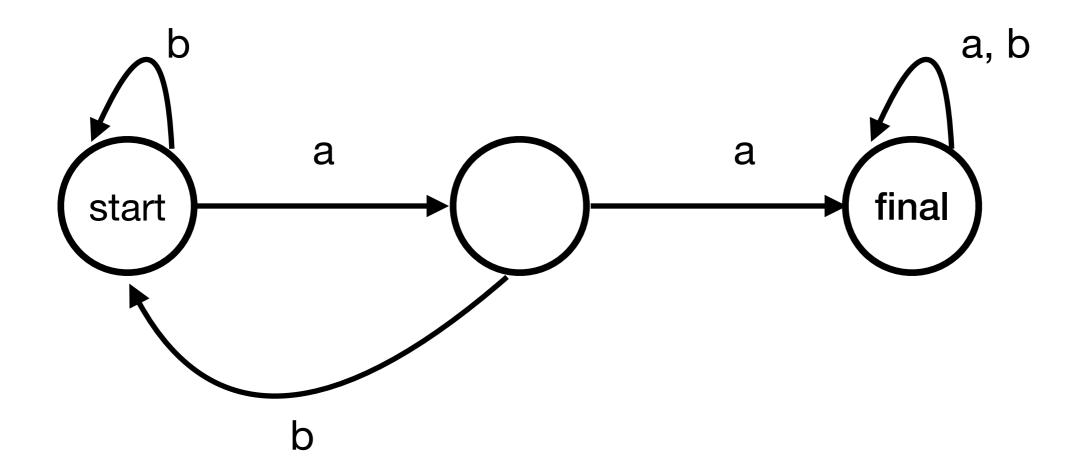
Succinct way to describe my excursions:

```
    c* Arbitrary number of trips to coffee machine
    (c+p)* m Arbitrary number of trips to coffee machine or printer, followed by a meeting {m, cm, pm, cpcccpm, ...}
```

Expressions formed with letters of alphabet

Language described by the expression

Not in the scope of 15-150!



This automaton accepts all strings over the alphabet {a,b} that contain at least two consecutive "a"s.

Notation and Definitions

Σ is an alphabet of characters. (non-empty, finite)

```
Example: \Sigma = \{a,b\}
(In SML, #"a" : char)
```

 Σ^* means the set of all finite-length strings over alphabet Σ .

```
Example: aabba in {a,b}* (In SML, "aabba": string)
```

ε is the empty string, containing no characters.

```
(In SML, "": string)
```

Notation and Definitions

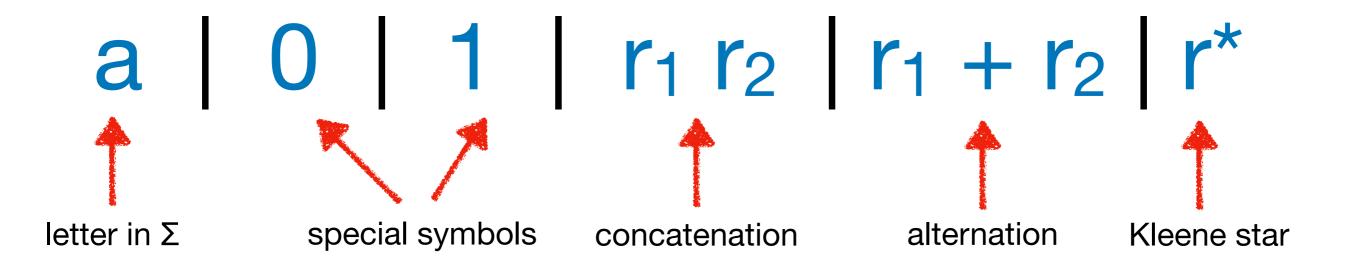
Σ is an alphabet of characters. (non-empty, finite)

A language over Σ is a subset of Σ^* .

Example: {aa, ab}

Regular expressions

A regular expression over an alphabet Σ is one of the following:



We use parantheses without regarding them as a part of the language.

L(r): Language of a regular expression

$$\begin{split} L(a) &= \{a\} \\ L(0) &= \{\} \\ L(1) &= \{\epsilon\} \\ \\ L(r_1r_2) &= \{s_1s_2 \mid s_1 \in L(r_1) \text{ and } s_2 \in L(r_2)\} \\ \\ L(r_1 + r_2) &= \{s \mid s \in L(r_1) \text{ or } s \in L(r_2)\} \\ \\ L(r^*) &= \{s_1 \dots s_n \mid n \geq 0 \text{ with } s_i \in L(r) \text{ for } 0 \leq i \leq n\} \\ \\ & \text{includes } \epsilon \text{ for } n = 0 \end{split}$$

$$Alternatively,$$

$$L(r^*) &= \{\epsilon\} \cup \{s_1s_2 \mid s_1 \in L(r) \text{ and } s_2 \in L(r^*)\} \end{split}$$

A language L is regular if L = L(r) for some regular expression r.

Examples

```
\begin{split} &L(a) = \{a\} \\ &L(0) = \{\} \\ &L(1) = \{\epsilon\} \\ &L(r_1 \; r_2) = \{s_1 \; s_2 \; \big| \; s_1 \in L(r_1) \; \text{and} \; s_2 \in L(r_2)\} \\ &L(r_1 + r_2) = \{s \; \big| \; s \in L(r_1) \; \text{or} \; s \in L(r_2)\} \\ &L(r^*) = \{s_1 \; \dots \; s_n \; \big| \; n \geq 0 \; \text{with} \; \; s_i \in L(r) \; \text{for} \; 0 \leq i \leq n\} \\ &Alternatively, \\ &L(r^*) = \{\epsilon\} \; \cup \; \{s_1 s_2 \; \big| \; s_1 \in L(r) \; \text{and} \; s_2 \in L(r^*)\} \end{split}
```

Assume $\Sigma = \{a,b\}$

What is the language for each of the following regular expressions?

```
a aa  (a+b)^* \\ (a+b)^*aa(a+b)^* \\ (a+1)(b+ba)^*   L(a) = \{a\} \\ L(aa) = \{aa\} \\ L((a+b)^*) = \Sigma^* \text{ (set of all strings over } \Sigma \text{)} \\ L((a+b)^*aa(a+b)^*) = \text{ set of strings with at least two consecutive "a"s.} \\ L((a+1)(b+ba)^*) = \text{ set of strings without two consecutive "a"s.}
```

Examples

Assume $\Sigma = \{a,b\}$ All of the regular expressions below generate the same language:

```
L(ab+b*ab)
L((1+b*)ab
L((1+bb*)ab)
L(b*ab)
L(b*ab+0)
```

All strings Σ^* consisting of 0 or more "b"s followed by ab (and nothing thereafter)

Motivating examples

Validate URL:

www.<either cs or ece>.<either cmu or pitt>.edu

www.(cs+ece).(cmu+pitt).edu

Representing regular expressions

```
a | 0 | 1 | r<sub>1</sub> r<sub>2</sub> | r<sub>1</sub> + r<sub>2</sub> | r*
```

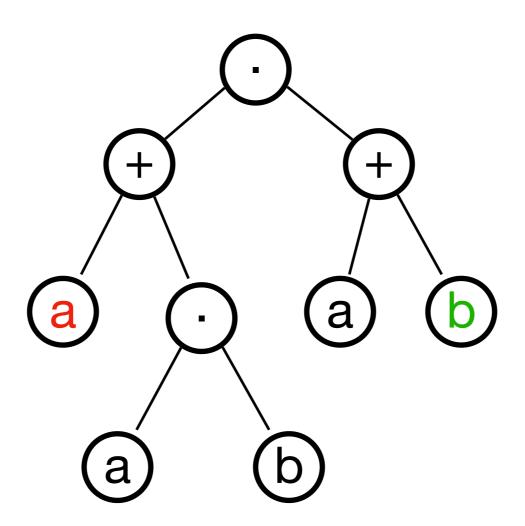
```
datatype regexp = Char of char
| Zero
| One
| Times of regexp * regexp
| Plus of regexp * regexp
| Star of regexp
```

```
(* accept : regexp -> string -> bool
     REQUIRES: true
     ENSURES: (accept r s) \cong true, if s \in L(r);
               (accept r s) \cong false, otherwise.
   *)
Consider regular expression r = (a + ab) (a + b)
What is the language of r, i.e., what is L(r)? {aa,ab,aba,abb}
What does accept return when we apply it to r and "aba"?
```

How do we split "aba"?

aba

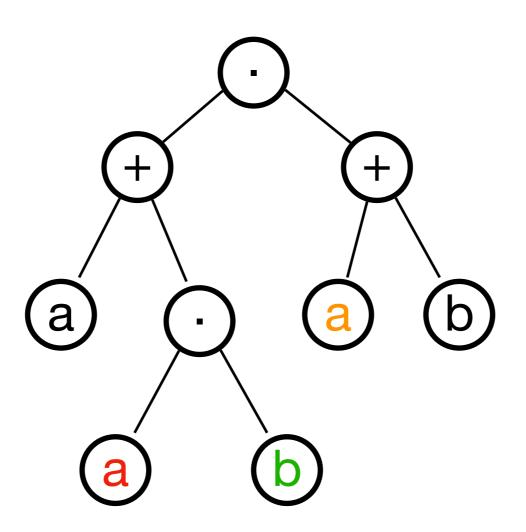
$$(a + ab) (a + b)$$



need to backtrack

aba

$$(a + ab) (a + b)$$



accept and match

```
(* accept : regexp -> string -> bool
  REQUIRES: true
  ENSURES: (accept r s) \cong true, if s \in L(r);
               (accept r s) \cong false, otherwise.
*)
(* match : regexp -> char list -> (char list -> bool) -> bool
  REQUIRES: k is total.
  ENSURES: (match r cs k) \cong true,
                          if cs can be split as cs \approx p@s,
                          with p representing a string in L(r)
                          and k(s) \cong true;
              (match r cs k) \approx false, otherwise.
*)
```

accept and match

```
(* accept : regexp -> string -> bool
   REQUIRES: true
   ENSURES: (accept r s) \cong true, if s \in L(r);
               (accept r s) \cong false, otherwise.
 *)
(* match : regexp -> char list -> (char list -> bool) -> bool
  REQUIRES: k is total.
  ENSURES: (match r cs k) \approx true,
                          if cs can be split as cs \approx p@s,
                          with p representing a string in L(r)
                          and k(s) \cong true;
              (match r cs k) \approx false, otherwise.
*)
fun accept r s = match r (String.explode s) List.null
```

```
match : regexp -> char list -> (char list -> bool) -> bool
```

```
\begin{split} & L(a) = \{a\} \\ & L(0) = \{\} \\ & L(1) = \{\epsilon\} \\ & L(r_1 \; r_2) = \{s_1 \; s_2 \; \big| \; s_1 \in L(r_1) \; \text{and} \; s_2 \in L(r_2)\} \\ & L(r_1 + r_2) = \{s \; \big| \; s \in L(r_1) \; \text{or} \; s \in L(r_2)\} \\ & L(r^*) = \{s_1 \; \dots \; s_n \; \big| \; n \geq 0 \; \text{with} \; \; s_i \in L(r) \; \text{for} \; 0 \leq i \leq n\} \\ & \text{Alternatively,} \\ & L(r^*) = \{\epsilon\} \; \cup \; \{s_1 s_2 \; \big| \; s_1 \in L(r) \; \text{and} \; s_2 \in L(r^*)\} \end{split}
```

(match r cs k) \cong true, if cs can be split as cs \cong p@s with p representing a string in L(r) and k(s) \cong true (match r cs k) \cong false, otherwise

```
\begin{split} & L(a) = \{a\} \\ & L(0) = \{\} \\ & L(1) = \{\epsilon\} \\ & L(r_1 \; r_2) = \{s_1 \; s_2 \; \big| \; s_1 \in L(r_1) \; \text{and} \; s_2 \in L(r_2)\} \\ & L(r_1 + r_2) = \{s \; \big| \; s \in L(r_1) \; \text{or} \; s \in L(r_2)\} \\ & L(r^*) = \{s_1 \; \dots \; s_n \; \big| \; n \geq 0 \; \text{with} \; \; s_i \in L(r) \; \text{for} \; 0 \leq i \leq n\} \\ & \text{Alternatively,} \\ & L(r^*) = \{\epsilon\} \; \cup \; \{s_1 s_2 \; \big| \; s_1 \in L(r) \; \text{and} \; s_2 \in L(r^*)\} \end{split}
```

fun match (Char(a)) cs k = (case cs of cs)

| match (Zero) _ _ = false

| match (One) cs k = k(cs)

| match (Times (r1,r2)) cs k = match r1 cs (fn cs' => match r2 cs' k)

| match (Plus (r1,r2)) cs k = match r1 cs k orelse match r2 cs k

| match (Star(r)) cs k = k(cs) orelse match r cs (fn cs' => match Star(r) cs' k)

may lead to an infinite loop

Example: match(Star(One)) ["#a"] List.null

List.null ["#a"] is false and match One cs k' will pass cs to k'

$$L(One) = \{[]\}, List.null ["#a"] = false$$

```
match (Star One) ["#a"] List. null
```

==> List.null ["#a"] **orelse**

match One ["#a"] (fn cs' => match (Star One) cs' List. null)

==> match One ["#a"] (fn cs' => match (Star One) cs' List.null)

==> (fn cs' => match (Star One) cs' List.null) ["#a"]

==> match (Star One) ["#a"] List.null

Proof-directed debugging

Theorem:

For all values r, cs, k (of the correct type), with k total, match r cs k reduces to a value.

Think about structural induction on r and the case

match (Star(r)) cs k = k(cs) orelse match r cs (fn cs' => match Star(r) cs' k)

Proof-directed debugging

Theorem:

For all values r, cs, k (of the correct type), with k total, match r cs k reduces to a value.

Think about structural induction on r and the case

match (Star(r)) cs k = k(cs) orelse match r cs (fn cs' => match Star(r) cs' k)

In IH, we may assume match r cs (fn cs' => match Star(r) cs' k) reduces to a value when (fn cs' => match Star(r) cs' k) is total. But do we know that it is total?

Circular argument!

| match (Star(r)) cs k = k(cs) orelse match r cs (fn cs' => match Star(r) cs' k)

Two ways to fix the problem

- (1) Change code to check cs' is a proper suffix of cs
- (2) ...

Two ways to fix the problem

- Change code
- Change specification to require that the input regular expression be in standard form
 - If Star(r) appears in the regular expression then ϵ is not in the language of r.

match function

Or require that the input regular expression be in standard form

A regular expression r is in standard form if and only if for any subexpression Star(r') of r, L(r') does not contain the empty string.

Sketch of a Proof of Correctness

- Prove termination: show that (match r cs k) returns a value for all arguments r, cs, k satisfying REQUIRES (We will assume termination in the rest of the proof).
- Prove soundness and completeness (We will do this assuming termination and write out one case).

Soundness and Completenes (assuming termination)

```
ENSURES: (match r cs k) \cong true, if cs \cong p@s, with p \in L(r) and k(s) \cong true; (match r cs k) \cong false, otherwise
```

Given termination, we can rephrase the spec as follows:

```
ENSURES: (match r cs k) \cong true if and only if there exist p, s such that cs \cong p@s, p \in L(r) and k(s) \cong true
```

Theorem:

```
For all values r: regexp, cs: char list, k: char list -> bool, with k total (match r cs k) \cong true if and only if there exist p, s such that cs \cong p@s, p \in L(r) and k(s) \cong true
```

We are assuming termination as a lemma.

Proof: By structural induction on r

Base cases: Zero, One, Char (a) for every a: char

Inductive cases: Plus (r_1, r_2) , Times (r_1, r_2) , Star (r)

Theorem:

For all values r: regexp, cs: char list, k: char list \rightarrow bool, with k total (match r cs k) \cong true if and only if

there exist p, s such that $cs \cong p@s, p \in L(r)$ and $k(s) \cong true$

We are assuming termination as a lemma.

Inductive case: $r = Plus(r_1, r_2)$ for some r_1 and r_2

IH: For i = 1,2, for all values cs: char list, k: char list -> bool, with k total (match r_i cs k) \cong true if and only if there exist p, s such that $cs \cong p@s$, $p \in L(r_i)$ and $k(s) \cong true$

NTS: For all values cs: char list, k: char list -> bool, with k total (match (Plus (r_1, r_2)) cs k) \cong true if and only if there exist p, s such that $cs \cong p@s$, $p \in L(Plus (r_1, r_2))$ and $k(s) \cong true$.

Soundness

Inductive case: $r = Plus(r_1, r_2)$ for some r_1 and r_2

IH: For i = 1,2, for all values cs: char list, k: char list -> bool, with k total (match r_i cs k) \cong true if and only if there exist p, s such that $cs \cong p@s$, $p \in L(r_i)$ and $k(s) \cong true$

NTS: For all values cs: char list, k: char list -> bool, with k total (match (Plus (r_1, r_2)) cs k)) \cong true if and only if there exist p, s such that $cs \cong p@s$, $p \in L(Plus (r_1, r_2))$ and $k(s) \cong true$.

(Part 1): Suppose (match (Plus (r_1, r_2)) cs k) \approx true

NTS: There exist p, s such that such that $cs \cong p@s$, $p \in L(Plus\ (r_1,\ r_2))$ and $k(s) \cong true$.

true \approx (match (Plus (r₁, r₂)) cs k) [Assumption]

 \cong (match r_1 cs k) **orelse** (match r_2 cs k) [Plus]

One or both arguments to orelse must be true. Let's suppose the first one.

By IH for r_1 there exist p, s such that cs = p@s, $p \in L(r_1)$ and k(s) = true.

 $p \in L(Plus(r_1, r_2))$ by language definition for Plus.

Completeness

Inductive case: $r = Plus(r_1, r_2)$ for some r_1 and r_2

IH: For i = 1,2, for all values cs: char list, k: char list -> bool, with k total (match r_i cs k) \cong true if and only if there exist p, s such that $cs \cong p@s$, $p \in L(r_i)$ and $k(s) \cong true$

NTS: For all values cs: char list, k: char list -> bool, with k total (match (Plus (r_1, r_2)) cs k) \cong true if and only if there exist p, s such that $cs \cong p@s$, $p \in L(Plus (r_1, r_2))$ and $k(s) \cong true$.

(Part 2): Suppose $cs \cong p@s, p \in L(Plus (r_1, r_2))$ and $k(s) \cong true$.

NTS: (match (Plus (r_1, r_2)) cs k) \cong true

(match (Plus (r_1, r_2)) cs k)

 \approx (match r₁ cs k) **orelse** (match r₂ cs k) [Plus]

By supposition, there exist p, s such that $cs \cong p@s$, $p \in L(Plus(r_1, r_2))$ and $k(s) \cong true$. By language definition for Plus, $p \in L(r_1)$ and/or $p \in L(r_2)$. If $p \in L(r_1)$, then (match $r_1 cs k$) $\cong true$, by IH for r_1 . Otherwise, (match $r_1 cs k$) $\cong false$ by termination, $p \in L(r_2)$, and (match $r_2 cs k$) $\cong true$ by IH for r_2 .