15-150

Principles of Functional Programming

Slides for Lecture 14
Regular Expressions
March 12, 2024
Michael Erdmann

Lessons:

- Regular Expressions
- Regular Languages
- Matcher
- Correctness
- Proof-Directed Debugging
- Termination
- Soundness and Completeness

Language Hierarchy

Class of Languages Recognizers Applications

Unrestricted Turing Machines

General
Computation
Linear-bounded
Context-Sensitive automata
Some simple
type-checking
Nondeterministic
Context-Free automata

Syntax checking

An example: Excursions from home

(home)

An example: Excursions from home

An example: Excursions from home

"c" means "go to CMU, then go home" " g " means "get groceries, then go home"

An example: Excursions from home

"c" means "go to CMU, then go home"
" g " means "get groceries, then go home" " w " means "go for a walk, then home"

An example: Excursions from home

"c" means "go to CMU, then go home" " g " means "get groceries, then go home" " w " means "go for a walk, then home"

Description of excursions in a given week:
C (go to CMU once) CC (go to CMU twice) $\mathbf{C C C}$ (go to CMU 3 times)
c* (go to CMU zero or more times)

CgC (go to CMU , then get groceries, then go to CMU)

An example: Excursions from home

"c" means "go to CMU, then go home" " 9 " means "get groceries, then go home" " w " means "go for a walk, then home"

Description of excursions in a given week:
$\mathbf{g + w} \quad$ (get groceries OR go for a walk)
$(\mathbf{g + w})^{*} \quad \begin{gathered}\text { (zero or more times do one of the } \\ \text { get groceries } \mathrm{OR} \text { go for a walk) }\end{gathered}$
$(g+w)^{*} C$
(zero or more times do one of the following: get groceries OR go for a walk; after that go to CMU once)

Notation and Definitions

Σ is an alphabet of characters. (nonempty, finite) For example, $\Sigma=\{a, b\}$.
(Using SML, \#"a" : char.)
Σ^{*}
means the set of all finite-length strings over alphabet Σ, i.e., with characters in Σ.

For example, aabba is in $\{a, b\}^{*}$.
(Using SML, "aabba" : string.)
$\boldsymbol{\varepsilon}$ is the empty string, containing no characters. ε is in Σ^{*}. (Using SML, "" : string.)

Notation and Definitions

A language over $\boldsymbol{\Sigma}$ is a subset of $\boldsymbol{\Sigma}^{*}$.
(In other words, a language is a set of finite-length strings with characters in Σ.
A language may contain infinitely many strings.)
We are here interested in a particular class of languages called regular languages. The languages may have infinite size, but we will describe them via a finite representation called regular expressions, much like in the excursion example.

Regular Expressions

Assume we have been given some alphabet $\boldsymbol{\Sigma}$.
A regular expression over $\boldsymbol{\Sigma}$ is any of the following:

Regular Expressions

Assume we have been given some alphabet Σ.
A regular expression over Σ is any of the following: a for every character $\mathbf{a} \in \Sigma$,

Regular Expressions

Assume we have been given some alphabet Σ.
A regular expression over $\boldsymbol{\Sigma}$ is any of the following:
a for every character $\mathbf{a} \in \Sigma$,
0 (a special symbol),

Regular Expressions

Assume we have been given some alphabet Σ.
A regular expression over $\boldsymbol{\Sigma}$ is any of the following:
a for every character $\mathbf{a} \in \Sigma$,
0 (a special symbol),
1 (another special symbol),

Regular Expressions

Assume we have been given some alphabet Σ.
A regular expression over Σ is any of the following:
a for every character $\mathbf{a} \in \Sigma$,
0 (a special symbol),
1 (another special symbol),
$\mathbf{r}_{\mathbf{1}}+\mathbf{r}_{\mathbf{2}}$ with $\mathbf{r}_{\mathbf{1}}$ and $\mathbf{r}_{\mathbf{2}}$ regular expressions
(called alternation),

Regular Expressions

Assume we have been given some alphabet $\boldsymbol{\Sigma}$.
A regular expression over $\boldsymbol{\Sigma}$ is any of the following:
a for every character $\mathbf{a} \in \boldsymbol{\Sigma}$,
0 (a special symbol),
1
$+r_{2}$
(another special symbol),
with \mathbf{r}_{1} and $\mathbf{r}_{\mathbf{2}}$ regular expressions (called alternation),
$r_{1} r_{2}$
with $\mathbf{r}_{\mathbf{1}}$ and $\mathbf{r}_{\mathbf{2}}$ regular expressions (called concatenation),

Regular Expressions

Assume we have been given some alphabet Σ.
A regular expression over Σ is any of the following:
a for every character $\mathbf{a} \in \Sigma$,
0 (a special symbol),

1
$+r_{2}$
$r_{1} r_{2}$
\mathbf{r}^{*}
(another special symbol),
with \mathbf{r}_{1} and $\mathbf{r}_{\mathbf{2}}$ regular expressions
(called alternation),
with \mathbf{r}_{1} and $\mathbf{r}_{\mathbf{2}}$ regular expressions (called concatenation),
with \mathbf{r} a regular expression (called Kleene star).

Regular Expressions

Assume we have been given some alphabet $\boldsymbol{\Sigma}$.
A regular expression over $\boldsymbol{\Sigma}$ is any of the following:
(And use parentheses as needed.)
$r_{1}+r_{2}$
$r_{1} r_{2}$
with \mathbf{r}_{1} and $\mathbf{r}_{\mathbf{2}}$ regular expressions (called concatenation),
$\mathbf{r}^{*} \quad$ with \mathbf{r} a regular expression (called Kleene star).

Regular Languages

Given regular expression \mathbf{r} we define language $\mathbf{L}(\mathbf{r})$:
$\mathbf{L}(\mathbf{a})=\{\mathbf{a}\}$ (singleton set) for every character $\mathbf{a} \in \Sigma$,
$\mathbf{L}(0)=\{ \} \quad$ (the empty language, no strings),
$L(1)=\{\varepsilon\}$ (the language consisting of the empty string),
$L\left(r_{1}+r_{2}\right)=\left\{s \mid s \in L\left(r_{1}\right)\right.$ or $\left.s \in L\left(r_{2}\right)\right\}$ (not exclusive),
$L\left(r_{1} r_{2}\right)=\left\{s_{1} s_{2} \mid s_{1} \in L\left(r_{1}\right)\right.$ and $\left.s_{2} \in L\left(r_{2}\right)\right\}$,
$L\left(\mathbf{r}^{*}\right)=\left\{\mathbf{s} \mid \mathbf{s}=\mathbf{s}_{1} \mathbf{s}_{\mathbf{2}} \cdots \mathbf{s}_{\mathbf{n}}\right.$, some $\mathbf{n} \geq 0$, with each $\left.\mathbf{s}_{\mathbf{i}} \in \mathrm{L}(\mathbf{r})\right\}$
(here we mean $\mathbf{s}=\boldsymbol{\varepsilon}$ when $\mathrm{n}=0$).
So: $\boldsymbol{\varepsilon} \in \mathbf{L}\left(\mathbf{r}^{*}\right)$ for all regular expressions \mathbf{r}.

Regular Languages

Let $\boldsymbol{\Sigma}$ be a given alphabet and \mathbf{L} a subset of $\boldsymbol{\Sigma}^{\star}$.

We say that language \mathbf{L} is regular if $\mathbf{L}=\mathbf{L}(\mathbf{r})$ for some regular expression \mathbf{r}.
(Fact: The class of regular languages over Σ is the minimal class containing the empty set and all singleton subsets of Σ, and that is closed under union, concatenation, and Kleene star.)
(The class is also closed under complement:
L is regular iff $\Sigma^{*} \backslash \mathrm{~L}$ is regular.)

Examples (assume $\Sigma=\{a, b\}$)

$\mathbf{L}(\mathbf{a})=\{\mathbf{a}\} \quad($ singleton set consisting of the string $\mathbf{a})$
$\mathbf{L}(\mathbf{a a})=\{\mathbf{a a}\} \quad($ singleton set consisting of the string aa)
$\mathbf{L}\left((\mathbf{a}+\mathbf{b})^{\star}\right)=\Sigma^{*} \quad$ all finite-length strings with $\mathbf{a s}$ and \mathbf{b} s)
$\mathbf{L}\left((\mathbf{a}+\mathbf{b})^{*} \mathbf{a}(\mathbf{a}+\mathbf{b})^{*}\right)=$ all strings in Σ^{*} containing at least two consecutive as.
$L\left((a+1)(b+b a)^{*}\right)=? ? ? ? ?$

Examples (assume $\Sigma=\{a, b\}$)

$\mathbf{L}(\mathbf{a})=\{\mathbf{a}\} \quad($ singleton set consisting of the string $\mathbf{a})$
$\mathbf{L}(\mathbf{a a})=\{\mathbf{a} \mathbf{\}} \quad($ singleton set consisting of the string $\mathbf{a a})$
$\mathbf{L}\left((\mathbf{a}+\mathbf{b})^{\star}\right)=\Sigma^{*} \quad$ all finite-length strings with $\mathbf{a s}$ and \mathbf{b} s)
$\mathbf{L}\left((\mathbf{a}+\mathbf{b})^{*} \mathbf{a}(\mathbf{a}+\mathbf{b})^{*}\right)=$ all strings in Σ^{*} containing at least two consecutive as.
$\mathbf{L}\left((\mathbf{a}+\mathbf{1})(\mathbf{b}+\mathbf{b a})^{*}\right)=$ all strings in Σ^{*} that do not contain two consecutive as.

Examples (assume $\Sigma=\{a, b\}$)

Comment: Different regular expressions can give rise to the same regular language.

For instance:

$$
\begin{aligned}
& \mathrm{L}\left(a b+b^{*} a b\right) \\
= & L\left(\left(1+b^{*}\right) a b\right) \\
= & L\left(\left(1+b b^{*}\right) a b\right) \\
= & L\left(b^{*} a b\right) \\
= & L\left(b^{*} a b+0\right)
\end{aligned}
$$

$=$ all strings in Σ^{*} consisting of zero or more bs followed by ab (and nothing thereafter).

Examples (assume $\boldsymbol{\Sigma}=\{\mathrm{a}, \mathrm{b}\}$)

Comment: Different regular expressions can give rise to the same regular language.

For instance:

$$
\begin{aligned}
& L\left(a b+b^{*} a b\right) \\
= & L\left(\left(1+b^{*}\right) a b\right) \\
= & L\left(\left(1+b b^{*}\right) a b\right) \\
= & L\left(b^{*} a b\right) \\
= & L\left(b^{*} a b+0\right)
\end{aligned}
$$

$=$ all strings in Σ^{*} consisting of zero or more bs followed by ab (and nothing thereafter).

An Acceptor

We would like to implement a function that decides whether a given string \mathbf{s} is in the language $\mathbf{L}(\mathbf{r})$ of a given regular expression \mathbf{r}.
(* accept : regexp $->$ string $->$ bool REQUIRES: true (may change this later). ENSURES: (accept $r s)$ returns true if $s \in L(r)$; (accept $r s$) returns false, otherwise.

Think of accept as a simple parser/compiler. (Still need to define the regexp type.)

Matching

Suppose $\mathbf{r}=(\mathbf{a}+\mathbf{a b})(\mathbf{a}+\mathbf{b})$.
Then $L(\mathbf{r})=\{\mathbf{a}, \mathbf{a b}, \mathbf{a b a}, \mathbf{a b b}\}$.
How does the acceptor recognize that $\mathbf{a b a} \in \mathbf{L (r)}$? By backtracking search.

View \mathbf{r} as a tree.
Use up characters in aba matching tree operations determined by \mathbf{r}.

Matching

Suppose $\mathbf{r}=(\mathbf{a}+\mathbf{a b})(\mathbf{a}+\mathbf{b})$.
Then $L(\mathbf{r})=\{\mathbf{a}, \mathbf{a b}, \mathbf{a b a}, \mathbf{a b b}\}$.
How does the acceptor recognize that $\mathbf{a b a} \in \mathbf{L (r)}$? By backtracking search.

View \mathbf{r} as a tree.
Use up characters in aba matching tree operations determined by \mathbf{r}.

First split of aba as a ba fails on last character.

Matching

Suppose $\mathbf{r}=(\mathbf{a}+\mathbf{a b})(\mathbf{a}+\mathbf{b})$.
Then $L(\mathbf{r})=\{\mathbf{a}, \mathbf{a b}, \mathbf{a b a}, \mathbf{a b b}\}$.
How does the acceptor recognize that aba $\in \mathbf{L (r)}$? By backtracking search.

View r as a tree.
Use up characters in aba matching tree operations determined by \mathbf{r}.

Second split of aba as ab a succeeds.

Matching

Suppose $\mathbf{r}=(\mathbf{a}+\mathbf{a b})(\mathbf{a}+\mathbf{b})$.
Then $L(r)=\{a a, a b, a b a, a b b\}$.
How does the acceptor recognize that $\mathbf{a b a} \in \mathbf{L (r)}$?
By backtracking search.

Tonight, do an evaluation trace on this example of the code we are about to write.
(Check yourself using today's lecture page.)

A Matcher

We will implement the backtracking search using a Boolean-specific continuation.
(* match : regexp -> char list ->
(char list -> bool) -> bool
REQUIRES: k is total (aside: weaker condition simplifies termination proof).

ENSURES: (match res k) returns true if Cs can be split as $C s \cong p @ s$, with p representing a string in $L(r)$ and $k(s)$ evaluating to true; (match r cs k) returns false, otherwise.

A Matcher

We will implement the backtracking search using a Boolean-specific continuation.
(* match : regexp -> char list ->
(char list -> bool) -> bool
REQUIRES: k is total.
ENSURES: (match r cs k) returns true if cs can be split as $c s \cong p @ s$, with
p representing a string in $L(r)$ and $k(s)$ evaluating to true; (match r cs k) returns false, otherwise. In discussions/proofs we sometimes treat them as identical.

Acceptor Based on Matcher Specs

(* match : regexp -> char list -> (char list -> bool) -> bool
REQUIRES: k is total.
ENSURES: (match res k) \cong true if
cs $\cong p @ s$, with $p \in L(r) \& k(s) \cong t r u e ;$
(match r cs k) \cong false, otherwise.
accept : regexp -> string -> bool
REQUIRES: true
ENSURES: (accept $r s$) \cong true if $s \in L(r)$;
(accept r s) \cong false otherwise.
*)
fun accept r s $=$ match r (String.explode s) List.null

Acceptor Based on Matcher Specs

(* match : regexp -> char list -> (char list -> bool) -> bool
REQUIRES: k is total.
ENSURES: (match res k) \cong true if
cs $\cong p @ s$, with $p \in L(r) \& k(s) \cong t r u e ;$
(match r cs k) \cong false, otherwise.
accept : regexp -> string -> bool
REQUIRES: true
ENSURES: (accept $r s$) \cong true if $s \in L(r)$;
(accept r s) \cong false otherwise.
*)
fun accept $r s=$ turns a string into a char list match r (String.explode s) List.null

List. null : 'a list -> bool decides whether a list is empty.

Implementation

We will define a datatype that mirrors the mathematical definition of regular expressions.

We will implement a matcher that mirrors the definition of a regular expression's language.

Implementation

datatype regexp $=$
Char of char
| Zero
| One
| Plus of regexp * regexp
| Times of regexp * regexp
| Star of regexp

Implementation

fun match

Implementation

fun match (Char a) cs $k=$

Implementation

fun match (Char a) cs $k=$

$$
\begin{gathered}
\text { (case cs of } \\
{[]=>} \\
\mid c:: c s^{\prime}=>
\end{gathered}
$$

Implementation

fun match (Char a) cs $k=$
(case cs of

$$
\begin{aligned}
& {[]=>\text { ????? }} \\
& \text { | c::cs' => }
\end{aligned}
$$

Recall:
(match r cs k) \cong true
if $c s \cong p @ s$, with $p \in L(r) \& k(s) \cong$ true

$$
L(a)=\{a\}
$$

Implementation

fun match (Char a) cs $k=$

$$
\begin{aligned}
& \text { (case cs of } \\
& \quad \text { [] => false } \\
& \text { | c:: cs' => ????? }
\end{aligned}
$$

Recall:
(match r cs k) \cong true
if $c s \cong p @ s$, with $p \in L(r) \& k(s) \cong$ true

$$
L(a)=\{a\}
$$

Implementation

fun match (Char a) cs $k=$

(case cs of

[] => false
| c::cs' => (a=c) andalso (k cs'))

Implementation

fun match (Char a) cs $k=$ (case cs of
[] => false | c:: cs' => (a=c) andalso (k cs'))

I match Zero _ _ = ?????

Recall:
(match r cs k) \cong true
if cs $\cong p @ s$, with $p \in L(r) \& k(s) \cong$ true
$L(0)=\{ \}$

Implementation

fun match (Char a) cs k =
(case cs of
[] => false
| c::cs' => (a=c) andalso (k cs'))
| match Zero _ _ = false

Implementation

fun match (Char a) cs $k=$ (case cs of
[] => false | c:: cs' => (a=c) andalso (k cs'))
| match Zero _ _ false
| match One cs k = ?????

Recall:
(match r cs k) \cong true
if cs $\cong p @ s$, with $p \in L(r) \& k(s) \cong$ true
$L(1)=\{\varepsilon\}$

Implementation

fun match (Char a) cs $k=$ (case cs of
[] => false
| c::cs' => (a=c) andalso (k cs'))
| match Zero _ _ false
| match One cs $k=k$ cs

Implementation

fun match (Char a) cs k = (case cs of
[] => false
| c::cs' => (a=c) andalso (k cs'))
| match Zero _ _ false
| match One cs $k=k$ cs
| match (Plus $\left(r_{1}, r_{2}\right)$) cs $k=$

Implementation

(match r cs k) \cong true

 if $c s \cong p @ s$, with $p \in L(r) \& k(s) \cong$ true$$
L\left(r_{1}+r_{2}\right)=\left\{s \mid s \in L\left(r_{1}\right) \text { or } s \in L\left(r_{2}\right)\right\}
$$

$\mid \operatorname{match}\left(\operatorname{Plus}\left(r_{1}, r_{2}\right)\right)$ cs $k=$ (match r_{1} cs k) ?????

Implementation

fun match (Char a) cs k =
(case cs of
[] => false
| c::cs' => (a=c) andalso (k cs'))
| match Zero _ _ = false
| match One cs $k=k$ cs
| match (Plus $\left(r_{1}, r_{2}\right)$) cs $k=$
(match r_{1} cs k) orelse (match r_{2} cs k)

Implementation

fun match (Char a) cs $k=$
(case cs of
[] => false
| c::cs' => (a=c) andalso (k cs'))
| match Zero _ _ false
| match One cs $k=k$ cs
| match (Plus $\left(r_{1}, r_{2}\right)$) cs $k=$
(match r_{1} cs k) orelse (match r_{2} cs k)
| match (Times $\left(r_{1}, r_{2}\right)$) cs $k=$

Implementation

(match r cs k) \cong true if $c s \cong p @ s$, with $p \in L(r) \& k(s) \cong$ true

$$
L\left(r_{1} r_{2}\right)=\left\{s_{1} s_{2} \mid s_{1} \in L\left(r_{1}\right) \text { and } s_{2} \in L\left(r_{2}\right)\right\}
$$

| match (Times $\left(r_{1}, r_{2}\right)$) cs $k=$ match r_{1} cs

Implementation

(match r cs k) \cong true if $c s \cong p @ s$, with $p \in L(r) \& k(s) \cong$ true

$$
L\left(r_{1} r_{2}\right)=\left\{s_{1} s_{2} \mid s_{1} \in L\left(r_{1}\right) \text { and } s_{2} \in L\left(r_{2}\right)\right\}
$$

| match (Times $\left(r_{1}, r_{2}\right)$) cs $k=$ match r_{1} cs (fin cs' $=>$?????

Implementation

fun match (Char a) cs k =
(case cs of
[] => false
| c:: cs' => (a=c) andalso (k cs'))
| match Zero _ _ = false
| match One cs $k=k$ cs
| match (Plus $\left(r_{1}, r_{2}\right)$) cs $k=$
(match r_{1} cs k) orelse (match r_{2} cs k)
| match (Times $\left(r_{1}, r_{2}\right)$) cs $k=$ match r_{1} cs (fin cs' $=>$ match r_{2} cs' k)

Implementation - Star clause

| match (Star r) cs $k=$

Implementation - Star clause

| match (Star r) cs k =

Recall: $L\left(r^{*}\right)=L\left(1+r r^{*}\right)$
We could make calls to previous clauses, but let's implement this equation directly.

Implementation - Star clause

| match (Star r) cs k =
k cs orelse

Recall: $L\left(r^{*}\right)=L\left(1+r r^{*}\right)$
We could make calls to previous clauses, but let's implement this equation directly.

Implementation - Star clause

match (Star r) cs $k=$
k cs orelse
match r cs (fn cs' =>

Recall: $L\left(r^{*}\right)=L\left(1+r r^{*}\right)$
We could make calls to previous clauses, but let's implement this equation directly.

Implementation - Star clause

> match (Star r) cs $k=$
> k cs orelse
> match r cs (fn cs' =>
> match (Star r) cs' k)

Recall: $L\left(r^{*}\right)=L\left(1+r r^{*}\right)$
We could make calls to previous clauses, but let's implement this equation directly.

There is a potential bug.

match (Star r) cs $k=$
(k cs) orelse (match r cs (fn cs' => match (Star r) cs' k))

Proof-Directed Debugging

| match (Star r) cs k =
(k cs) orelse (match r cs (fn cs' => match (Star r) cs' k))
Imagine trying to prove that (match (Star r) cs k) reduces to a value as part of some larger induction proof that match always terminates (returns a value) when given input satisfying the specs.

In the Induction Hypothesis we may assume that (match res \mathbf{k}) reduces to a value whenever \mathbf{k} is total. So we need to establish that (fn cs' => match (Star r) cs' k) is total. Now we are in a circular argument!

Proof-Directed Debugging

| match (Star r) cs k =
(k cs) orelse (match r cs (fn cs' => match (Star r) cs' k))
A possible way out: We don't really need to establish that (fn cs' => match (Star r) cs' k)
is total, merely that it returns values when called on suffixes cs ' of the given cs. Maybe a second induction on cs will help.

If we could show that cs' is a proper suffix of cs, we could perhaps establish eventual termination.

Proof-Directed Debugging

| match (Star r) cs k =
(k cs) orelse (match res (fn cs' => match (Star r) cs' k))
A possible way out: We don't really need to establish that
(fn cs' => match (Star r) cs' k)
is total, merely that it returns values when called on suffixes cs ' of the given cs. Maybe a second induction on cs will help.

If we could show that cs ' is a proper suffix of cs, we could perhaps establish eventual termination.

ALAS, that need not be true:

 match (Star One) [\#"a"] List.nullwill loop forever since List.null [\#"a"] \cong false and since match One cs k^{\prime} will pass all of cs to k^{\prime}.

Proof-Directed Debugging

| match (Star r) cs k =
(k cs) orelse (match res (fn cs' => match (Star r) cs' k))

This issue arises when the empty string is in $L(x)$.

If we could show that cs ' is a proper suffix of cs, we could perhaps establish eventual termination.

ALAS, that need not be true: match (Star One) [\#"a"] List.null
will loop forever since List.null [\#"a"] § false and since match One cs k^{\prime} will pass all of cs to k^{\prime}.

Two possible fixes to avoid infinite loops

1. Change the specs:

- Require regular expressions to be in standard form (definition shortly).

2. Change the code:

- Explicitly check that cs' is a proper suffix of cs.

Two possible fixes to avoid infinite loops

1. Change the specs

Definition:
A regular expression r is in standard form iff for any subexpression $\operatorname{Star}\left(r^{\prime}\right)$ of r, $\mathbf{L}\left(r^{\prime}\right)$ does not contain the empty string ε.
Fact: It is possible to convert any regular expression r into a regular expression q that is in standard form such that $\mathbf{L}(\mathbf{r})=\mathbf{L}(\mathrm{q})$.
Consequently, if we REQUIRE regular expressions to be in standard form we avoid infinite loops without losing any regular languages.
(Preprocess \mathbf{r} into standard form, then call match.)

Two possible fixes to avoid infinite loops
2. Change the code
| match (Star r) cs k =
k cs orelse
match r cs (fn cs' =>
properSuffix (cs',cs)
andalso
match (Star r) cs' k)

Two possible fixes to avoid infinite loops
2. Change the code
| match (Star r) cs k =
k cs orelse match r cs (fn cs' => This is new. properSuffix (cs',cs) andalso
match (Star r) cs' k)

The code checks that cs ' is a proper suffix of cs.

Sketch of a Proof of Correctness

1. Prove Termination

Show that (match resk) returns a value for all arguments \mathbf{r}, cs, \mathbf{k} satisfying REQUIRES specs.
(This proof is surprisingly difficult. We assume it here.)

2. Prove Soundness and Completeness

Given termination, we can simplify the ENSURES specs in a convenient way, then perform structural induction. (We will write out one of the recursive cases here.)

Soundness \& Completeness, Assuming Termination

Here are the given ensures specs for match:

```
(match r cs k) \cong true if cs\congp@s,
                with p G L(r) and k(s)\cong true;
(match r cs k) \cong false, otherwise.
```

Given termination, we can rephrase the specs as:
(match $r \operatorname{cs} k) \cong$ true if and only if there exist p and s such that $c s \cong p @ s, p \in L(r)$, and $k(s) \cong$ true.

That is the theorem we must prove.
The "if" part is sometimes called "completeness". The "only if" part is sometimes called "soundness".

Theorem
 For all values

\mathbf{r} : regexp, $\mathbf{c s}$: char list, \mathbf{k} : char list -> bool, with \mathbf{k} total, (match rcs k) \cong true if and only if
there exist p and s such that $\mathrm{cs} \cong \mathrm{p} @ \mathrm{~s}, \mathrm{p} \in \mathrm{L}(\mathrm{r})$, and $\mathrm{k}(\mathrm{s}) \cong$ true.

Theorem
 For all values

\mathbf{r} : regexp, cs : char list, \mathbf{k} : char list -> bool, with \mathbf{k} total, (match rcs k) \cong true if and only if
there exist p and s such that $\mathrm{cs} \cong \mathrm{p} @ \mathrm{~s}, \mathrm{p} \in \mathrm{L}(\mathrm{r})$, and $\mathrm{k}(\mathrm{s}) \cong$ true.
(We are assuming termination as a lemma.)

Theorem
 For all values

\mathbf{r} : regexp, cs : char list, \mathbf{k} : char list -> bool, with \mathbf{k} total, (match r cs k) \cong true if and only if
there exist p and s such that $\mathrm{cs} \cong \mathrm{p} @ \mathrm{~s}, \mathrm{p} \in \mathrm{L}(\mathrm{r})$, and $\mathrm{k}(\mathrm{s}) \cong$ true.
(We are assuming termination as a lemma.)
Proof By structural induction on \mathbf{r}.

Theorem For all values

\mathbf{r} : regexp, $\mathbf{c s}$: char list, \mathbf{k} : char list -> bool, with \mathbf{k} total, (match rcs k) \cong true if and only if
there exist p and s such that $c s \cong p @ s, p \in L(r)$, and $k(s) \cong$ true.
(We are assuming termination as a lemma.)
Proof By structural induction on \mathbf{r}.
Base Cases: Zero, One, Char (a) for every a:char.

Theorem For all values

\mathbf{r} : regexp, $\mathbf{c s}$: char list, \mathbf{k} : char list -> bool, with \mathbf{k} total, (match rcs k) \cong true if and only if
there exist p and s such that $c s \cong p @ s, p \in L(r)$, and $k(s) \cong$ true.
(We are assuming termination as a lemma.)
Proof By structural induction on \mathbf{r}.
Base Cases: Zero, One, Char (a) for every a:char. Inductive Cases:

Plus (r_{1}, r_{2}), Times (r_{1}, r_{2}), Star (r).
\mathbf{r} : regexp, $\mathbf{c s}$: char list, \mathbf{k} : char list -> bool, with \mathbf{k} total, (match rcs k) \cong true if and only if
there exist \mathbf{p} and \mathbf{s} such that $c s \cong p @ s, p \in L(r)$, and $k(s) \cong$ true.
(We are assuming termination as a lemma.)
Proof By structural induction on \mathbf{r}.
Base Cases: Zero, One, Char (a) for every a : char. Inductive Cases:

$$
\text { Plus }\left(r_{1}, r_{2}\right), \text { Times }\left(r_{1}, r_{2}\right), \operatorname{Star}(r)
$$

We will discuss only the Plus case here, as an example. (See also today's online notes, including another proof technique.)

Inductive Case $\boldsymbol{r}=\operatorname{Plus}\left(\mathbf{r}_{1}, \boldsymbol{r}_{2}\right)$, for some $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}$:

IH:
For $\mathbf{i = 1 , 2}$ and for all values $\mathbf{c s} \& \mathbf{k}$, with \mathbf{k} total, (match r_{i} cs k) \cong true iff there exist $p \& s$ such that $c s \cong p @ s, p \in L\left(r_{i}\right), \& k(s) \cong$ true.

For all values $\mathbf{c s} \& \mathbf{k}$, with \mathbf{k} total, (match (Plus $\left(r_{1}, r_{2}\right)$) cs k) \cong true iff there exist $p \& s$ such that $\mathrm{cs} \cong \mathrm{p} @ \mathbf{s}, \mathrm{p} \in \mathrm{L}\left(\operatorname{Plus}\left(\mathrm{r}_{1}, r_{2}\right)\right), \& \mathrm{k}(\mathrm{s}) \cong$ true.
(We will prove the two parts of the "iff" separately.)
I. Suppose (match (Plus $\left.\left(r_{1}, r_{2}\right)\right)$ cs $\left.k\right) \cong$ true.

NTS: There exist $\mathrm{p} \& \mathbf{s}$ such that $\mathbf{c s} \cong \mathrm{p} @ \mathbf{s}$,

$$
p \in L\left(\text { Plus }\left(r_{1}, r_{2}\right)\right), \& k(s) \cong \text { true } .
$$

Showing:
true
[assumption] $\cong\left(\operatorname{match}\left(\operatorname{Plus}\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)\right) \mathrm{cs} \mathrm{k}\right)$
[Plus] \cong (match r_{1} cs k) orelse (match r_{2} cs k)
\therefore One or both of the arguments to orelse must be true.
Let us suppose it is the first argument (proof similar for second).
So (match r_{1} cs k) \cong true.
By IH for r_{1},
there exist $\mathrm{p} \& \mathbf{s}$ s.t. $\mathbf{c s} \cong \mathrm{p} @ \mathbf{s}, \mathrm{p} \in \mathrm{L}\left(\mathrm{r}_{1}\right), \& \mathbf{k}(\mathbf{s}) \cong$ true.
Then also $p \in L$ (Plus (r_{1}, r_{2}) , by language definition for Plus.
That finishes this part of the proof (soundness).
II. Suppose there exist $\mathrm{p} \& \mathbf{s}$ such that cs $\cong \mathrm{p} @ \mathbf{s}$,

$$
p \in L\left(\operatorname{Plus}\left(r_{1}, r_{2}\right)\right), \& k(s) \cong \operatorname{true} .
$$

NTS: (match (Plus $\left(r_{1}, r_{2}\right)$) cs k) \cong true.
Showing: (match (Plus $\left(r_{1}, r_{2}\right)$) cs k)
[Plus] \cong (match r_{1} cs k) orelse (match r_{2} cs k)
[see below] § true
By supposition, there exist $\mathbf{p \& s}$ such that $\mathbf{c s} \cong \mathrm{p} @ \mathbf{s}$, $p \in L\left(\operatorname{Plus}\left(r_{1}, r_{2}\right)\right), \& k(s) \cong$ true. By the language definition for plus, $p \in L\left(r_{1}\right)$ and/or $p \in L\left(r_{2}\right)$.

If $p \in L\left(r_{1}\right)$, then (match r_{1} cs k) \cong true by IH for r_{1}.
Otherwise, (match r_{1} cs k) \cong false by termination, $p \in L\left(r_{2}\right)$, and (match r_{2} cs k) \cong true by lH for r_{2}.

That finishes this part of the proof (completeness), and so the Plus case.

That is all.

Please have a good lab.

See you Thursday.

We will discuss another matcher, inspired by staging and combinators.

