
Higher-Order Functions II: Staging

15-150
Lecture 11: October 2, 2025

Stephanie Balzer
Carnegie Mellon University

1

Let's revisit foldl and foldr on lists

2

Higher-order function: fold

3

Combining elements in a list, given a binary operation and base value:

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Higher-order function: fold

3

Combining elements in a list, given a binary operation and base value:

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

combining function:

type of base value and
of combined value

‘a: type of list elements
‘b:

Higher-order function: fold

3

Combining elements in a list, given a binary operation and base value:

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

combining function:

type of base value and
of combined value

‘a: type of list elements
‘b:

initial value

Higher-order function: fold

3

Combining elements in a list, given a binary operation and base value:

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

combining function:

type of base value and
of combined value

‘a: type of list elements
‘b:

initial value
list to be combined

Higher-order function: fold

3

Combining elements in a list, given a binary operation and base value:

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

combining function:

type of base value and
of combined value

‘a: type of list elements
‘b:

initial value
list to be combined

combined value

Higher-order function: fold

4

Combining elements in a list, given a binary operation and base value:

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Higher-order function: fold

4

Combining elements in a list, given a binary operation and base value:

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Two implementations:

foldl f z [x1,…,xn] ≅ f(xn,…f(x3,f(x2,f(x1,z))))

foldr f z [x1,…,xn] ≅ f(x1,…f(xn-2,f(xn-1,f(xn,z))))

Higher-order function: fold

4

Combining elements in a list, given a binary operation and base value:

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Two implementations:

foldl f z [x1,…,xn] ≅ f(xn,…f(x3,f(x2,f(x1,z))))

foldr f z [x1,…,xn] ≅ f(x1,…f(xn-2,f(xn-1,f(xn,z))))

Higher-order function: fold

4

Combining elements in a list, given a binary operation and base value:

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Two implementations:

foldl f z [x1,…,xn] ≅ f(xn,…f(x3,f(x2,f(x1,z))))

foldr f z [x1,…,xn] ≅ f(x1,…f(xn-2,f(xn-1,f(xn,z))))

Higher-order function: fold

5

Combining elements in a list, given a binary operation and base value:

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Two implementations:

foldl f z [x1,…,xn] ≅ f(xn,…f(x3,f(x2,f(x1,z))))

foldr f z [x1,…,xn] ≅ f(x1,…f(xn-2,f(xn-1,f(xn,z))))

Examples:
foldl (op -) 0 [1,2,3,4] ==> 2

Higher-order function: fold

5

Combining elements in a list, given a binary operation and base value:

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Two implementations:

foldl f z [x1,…,xn] ≅ f(xn,…f(x3,f(x2,f(x1,z))))

foldr f z [x1,…,xn] ≅ f(x1,…f(xn-2,f(xn-1,f(xn,z))))

Examples:
foldl (op -) 0 [1,2,3,4] ==> 2 (4-(3-(2-(1-0))))

Higher-order function: fold

6

Combining elements in a list, given a binary operation and base value:

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Two implementations:

foldl f z [x1,…,xn] ≅ f(xn,…f(x3,f(x2,f(x1,z))))

foldr f z [x1,…,xn] ≅ f(x1,…f(xn-2,f(xn-1,f(xn,z))))

Examples:
foldl (op -) 0 [1,2,3,4] ==> 2
foldr (op -) 0 [1,2,3,4] ==> ~2

Higher-order function: fold

6

Combining elements in a list, given a binary operation and base value:

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Two implementations:

foldl f z [x1,…,xn] ≅ f(xn,…f(x3,f(x2,f(x1,z))))

foldr f z [x1,…,xn] ≅ f(x1,…f(xn-2,f(xn-1,f(xn,z))))

Examples:
foldl (op -) 0 [1,2,3,4] ==> 2
foldr (op -) 0 [1,2,3,4] ==> ~2 (1-(2-(3-(4-0))))

Higher-order function: fold

7

Higher-order function: fold

7

Let’s implement foldl and foldr:
(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Higher-order function: fold

7

Let’s implement foldl and foldr:

fun foldl f z [] = z
 | foldl f z (x::xs) = foldl f (f(x,z)) xs

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Higher-order function: fold

8

Let’s implement foldl and foldr:

fun foldl f z [] = z
 | foldl f z (x::xs) = foldl f (f(x,z)) xs

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Higher-order function: fold

9

Let’s implement foldl and foldr:

fun foldl f z [] = z
 | foldl f z (x::xs) = foldl f (f(x,z)) xs

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Higher-order function: fold

10

Let’s implement foldl and foldr:

fun foldl f z [] = z
 | foldl f z (x::xs) = foldl f (f(x,z)) xs

fun foldr f z [] = z
 | foldr f z (x::xs) = f(x, foldr f z xs)

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Higher-order function: fold

11

Let’s implement foldl and foldr:

fun foldl f z [] = z
 | foldl f z (x::xs) = foldl f (f(x,z)) xs

fun foldr f z [] = z
 | foldr f z (x::xs) = f(x, foldr f z xs)

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Higher-order function: fold

12

Let’s implement foldl and foldr:

fun foldl f z [] = z
 | foldl f z (x::xs) = foldl f (f(x,z)) xs

fun foldr f z [] = z
 | foldr f z (x::xs) = f(x, foldr f z xs)

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Higher-order function: fold

12

Let’s implement foldl and foldr:

fun foldl f z [] = z
 | foldl f z (x::xs) = foldl f (f(x,z)) xs

fun foldr f z [] = z
 | foldr f z (x::xs) = f(x, foldr f z xs)

Homework:
foldl (op ::) [] [1,2,3,4] ==> ?
foldr (op ::) [] [1,2,3,4] ==> ?

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Map and fold over trees and other datatypes

13

Can we generalize map and fold?

14

Can we generalize map and fold?

14

So fare we have considered map and fold exclusively for lists.

Can we generalize map and fold?

14

So fare we have considered map and fold exclusively for lists.

map: transform elements in a list, given a transformation function

Can we generalize map and fold?

14

So fare we have considered map and fold exclusively for lists.

map: transform elements in a list, given a transformation function

fold: combines elements in a list, given a binary operation and
base value

Can we generalize map and fold?

14

So fare we have considered map and fold exclusively for lists.

map: transform elements in a list, given a transformation function

fold: combines elements in a list, given a binary operation and
base value

Can we generalize map and fold to, for example, binary trees?

Can we generalize map and fold?

14

So fare we have considered map and fold exclusively for lists.

map: transform elements in a list, given a transformation function

fold: combines elements in a list, given a binary operation and
base value

Can we generalize map and fold to, for example, binary trees?

Yes! Let’s work it out.

Can we generalize map and fold?

14

So fare we have considered map and fold exclusively for lists.

map: transform elements in a list, given a transformation function

fold: combines elements in a list, given a binary operation and
base value

Can we generalize map and fold to, for example, binary trees?

Yes! Let’s work it out.

It may be helpful to visualize map and fold for lists
diagrammatically first, to capture the underlying pattern.

The “pattern” underlying map

15

The “pattern” underlying map

15

(* map: ('a -> 'b) -> 'a list -> 'b list *)

The “pattern” underlying map

15

(* map: ('a -> 'b) -> 'a list -> 'b list *)

::

v1 ::

v2 ::

v3 [][]

The “pattern” underlying map

15

map f

(* map: ('a -> 'b) -> 'a list -> 'b list *)

::

v1 ::

v2 ::

v3 [][]

The “pattern” underlying map

15

map f

(* map: ('a -> 'b) -> 'a list -> 'b list *)

::

v1 ::

v2 ::

v3 [][]

::

f(v1) ::

f(v2) ::

f(v3) [][]

The “pattern” underlying map

16

map f

(* map: ('a -> 'b) -> 'a list -> 'b list *)

::

v1 ::

v2 ::

v3 [][]

::

f(v1) ::

f(v2) ::

f(v3) [][]

The “pattern” underlying map

16

map f

(* map: ('a -> 'b) -> 'a list -> 'b list *)

::

v1 ::

v2 ::

v3 [][]

::

f(v1) ::

f(v2) ::

f(v3) [][]

Replace every element value vi with its transformed value f(vi).

The “pattern” underlying map

17

map f

(* map: ('a -> 'b) -> 'a list -> 'b list *)

::

v1 ::

v2 ::

v3 [][]

::

f(v1) ::

f(v2) ::

f(v3) [][]

Replace every element value vi with its transformed value f(vi).

The “pattern” underlying fold

18

The “pattern” underlying fold

18

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

The “pattern” underlying fold

18

::

v1 ::

v2 ::

v3 [][]

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

The “pattern” underlying fold

18

fold f z

::

v1 ::

v2 ::

v3 [][]

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

The “pattern” underlying fold

18

fold f z

::

v1 ::

v2 ::

v3 [][]

f

v1 f

v2 f

v3 []z

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

The “pattern” underlying fold

19

fold f z

::

v1 ::

v2 ::

v3 [][]

f

v1 f

v2 f

v3 []z

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

The “pattern” underlying fold

19

fold f z

::

v1 ::

v2 ::

v3 [][]

f

v1 f

v2 f

v3 []z

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Replace every constructor with a function or value.

The “pattern” underlying fold

20

fold f z

::

v1 ::

v2 ::

v3 [][]

f

v1 f

v2 f

v3 []z

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Replace every constructor with a function or value.

The “pattern” underlying fold

20

fold f z

::

v1 ::

v2 ::

v3 [][]

f

v1 f

v2 f

v3 []z

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Replace every constructor with a function or value.

n-ary constructors
become n-ary functions

Map and fold for binary trees

21

Map and fold for binary trees

21

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

22

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

23

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

24

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

25

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

26

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

27

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

28

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

28

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

28

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

same number
of arguments as

constructor

Map and fold for binary trees

28

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

same number
of arguments as

constructor

result of fold
of left subtree

Map and fold for binary trees

28

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

same number
of arguments as

constructor

result of fold
of left subtree result of fold

of right subtree

Map and fold for binary trees

28

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

same number
of arguments as

constructor

result of fold
of left subtree result of fold

of right subtree

base value for
empty

Map and fold for binary trees

29

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

30

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

31

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

32

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

33

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

34

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Examples for tmap and tfold

35

What are the types of stringify and treesum?

(* stringify : int tree -> string tree *)

(* treesum : int tree -> int *)

Examples for tmap and tfold

35

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)

val stringify = tmap Int.toString

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(* stringify : int tree -> string tree *)

(* treesum : int tree -> int *)

Examples for tmap and tfold

36

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)

val stringify = tmap Int.toString

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(* stringify : int tree -> string tree *)

(* treesum : int tree -> int *)

Examples for tmap and tfold

37

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)

val stringify = tmap Int.toString

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(* stringify : int tree -> string tree *)

(* treesum : int tree -> int *)

Examples for tmap and tfold

38

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)

val stringify = tmap Int.toString

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(* stringify : int tree -> string tree *)

(* treesum : int tree -> int *)

Examples for tmap and tfold

39

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)

val stringify = tmap Int.toString

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(* stringify : int tree -> string tree *)

(* treesum : int tree -> int *)

Examples for tmap and tfold

40

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)

val stringify = tmap Int.toString

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(* stringify : int tree -> string tree *)

(* treesum : int tree -> int *)

Examples for tmap and tfold

41

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)

val stringify = tmap Int.toString

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(* stringify : int tree -> string tree *)

(* treesum : int tree -> int *)

Examples for tmap and tfold

42

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)

val stringify = tmap Int.toString

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(* stringify : int tree -> string tree *)

(* treesum : int tree -> int *)

Map and fold for leafy binary trees

43

Map and fold for leafy binary trees

43

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> ‘b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

44

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> ‘b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

45

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> ‘b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

46

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> ‘b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

47

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> ‘b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

48

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> ‘b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

49

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

50

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

51

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

52

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

53

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Examples for lmap and lfold

54

Examples for lmap and lfold

54

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)

val lstringify = lmap Int.toString

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *)
val leafysum = lfold (op +) (fn x => x)

Examples for lmap and lfold

55

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)

val lstringify = lmap Int.toString

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *)
val leafysum = lfold (op +) (fn x => x)

What are the types of ltringify and leafysum?

Examples for lmap and lfold

56

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)

val lstringify = lmap Int.toString

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *)
val leafysum = lfold (op +) (fn x => x)

What are the types of ltringify and leafysum?

(* lstringify : int leafy -> string leafy *)

(* leafysum : int leafy -> int *)

Map and fold for non-recursive datatypes

57

Map and fold for non-recursive datatypes

57

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

58

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

59

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

60

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

61

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

62

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

63

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

64

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

65

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

66

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

67

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Examples for opmap and opfold

68

Examples for opmap and opfold

68

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)

val ostringify = opmap Int.toString

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
val osum = opfold (fn x => x) 0

Examples for opmap and opfold

69

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)

val ostringify = opmap Int.toString

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
val osum = opfold (fn x => x) 0

What are the types of otringify and osum?

Examples for opmap and opfold

70

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)

val ostringify = opmap Int.toString

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
val osum = opfold (fn x => x) 0

What are the types of otringify and osum?

(* ostringify : int option -> string option *)

(* osum : int option -> int *)

Staging

71

Another use of HOF: Staging

72

Another use of HOF: Staging

72

Staging is a coding technique
that has a function perform useful work
prior to receiving all its arguments.

Another use of HOF: Staging

72

Staging is a coding technique
that has a function perform useful work
prior to receiving all its arguments.

Concern: efficiency (“cost”) of evaluation

Another use of HOF: Staging

72

Staging is a coding technique
that has a function perform useful work
prior to receiving all its arguments.

Concern: efficiency (“cost”) of evaluation

Employs partial application

Another use of HOF: Staging

72

Staging is a coding technique
that has a function perform useful work
prior to receiving all its arguments.

Concern: efficiency (“cost”) of evaluation

Employs partial application

to factor out expensive part

Another use of HOF: Staging

72

Staging is a coding technique
that has a function perform useful work
prior to receiving all its arguments.

Concern: efficiency (“cost”) of evaluation

Employs partial application

to factor out expensive part

to specialize inexpensive part for specific argument.

Another use of HOF: Staging

72

Staging is a coding technique
that has a function perform useful work
prior to receiving all its arguments.

Concern: efficiency (“cost”) of evaluation

Employs partial application

to factor out expensive part

to specialize inexpensive part for specific argument.

Improves efficiency when specialized function used many times.

Staging

73

Staging

73

Consider the following function:

Staging

73

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

Staging

73

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

Suppose the horrible computation takes 10 months.
(And suppose that addition takes a picosecond.)

Staging

73

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

Suppose the horrible computation takes 10 months.
(And suppose that addition takes a picosecond.)

Then each of these expressions takes at least 10 months to evaluate:
f (5,2)
f (5,3)

Staging

73

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

Suppose the horrible computation takes 10 months.
(And suppose that addition takes a picosecond.)

Then each of these expressions takes at least 10 months to evaluate:
f (5,2)
f (5,3)

If only we could recall horriblecomputation(5)!

Staging

73

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

Suppose the horrible computation takes 10 months.
(And suppose that addition takes a picosecond.)

Then each of these expressions takes at least 10 months to evaluate:
f (5,2)
f (5,3)

If only we could recall horriblecomputation(5)!

without mutation

Staging

74

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

Staging

74

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

What is the type of f?

Staging

74

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

What is the type of f?
(* f : int * int -> int *)

Staging

74

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

What is the type of f?
(* f : int * int -> int *)

Maybe currying can help?

Staging

74

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

What is the type of f?
(* f : int * int -> int *)

Maybe currying can help?

Let’s define a curried version of f!

Staging

75

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Staging

75

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is

Staging

75

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is (* g : int -> int -> int *),

Staging

75

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is (* g : int -> int -> int *)
so we can define

,

Staging

75

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is (* g : int -> int -> int *)
so we can define val g5 : int -> int = g(5)

,

Staging

75

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is (* g : int -> int -> int *)
so we can define val g5 : int -> int = g(5)

,

and then evaluate

Staging

75

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is (* g : int -> int -> int *)
so we can define val g5 : int -> int = g(5)

,

and then evaluate g5 (2)

Staging

75

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is (* g : int -> int -> int *)
so we can define val g5 : int -> int = g(5)

,

and then evaluate g5 (2) (* instead of f (5,2) *)

Staging

75

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is (* g : int -> int -> int *)
so we can define val g5 : int -> int = g(5)

,

and then evaluate g5 (2) (* instead of f (5,2) *)

g5 (3)

Staging

75

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is (* g : int -> int -> int *)
so we can define val g5 : int -> int = g(5)

,

and then evaluate g5 (2) (* instead of f (5,2) *)

g5 (3) (* instead of f (5,3) *)

Staging

75

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is (* g : int -> int -> int *)
so we can define val g5 : int -> int = g(5)

,

and then evaluate g5 (2) (* instead of f (5,2) *)

g5 (3) (* instead of f (5,3) *)

How long do the 3 lines above take?

Staging

76

How long do the 3 lines above take?

Staging

76

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

Staging

76

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

Staging

76

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates

Staging

76

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)

Staging

76

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)

Staging

76

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

Staging

76

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

Staging

76

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

This is a lambda, and
thus s a value!

Staging

76

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

This is a lambda, and
thus s a value!

No application, and thus no
evaluation of body!

Staging

77

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

Staging

77

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

Staging

77

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

This is the closure
returned by g(5).

Staging

77

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

This is the closure
returned by g(5).

The horrible
computation has not yet

happened :-(

Staging

78

Staging

78

We now have the following binding:

Staging

78

We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[g5][5/x] /

Staging

78

We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[g5][5/x] /
Evaluating g5(2)

Staging

78

We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[g5][5/x] /
Evaluating g5(2)

==> [5/x, 2/y] let val z = hc(x) in z+y end

Staging

78

We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[g5][5/x] /
Evaluating g5(2)

==> [5/x, 2/y] let val z = hc(x) in z+y end
==> [5/x, 2/y, n/z] z+y (for some integer n)

Staging

78

We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[g5][5/x] /
Evaluating g5(2)

==> [5/x, 2/y] let val z = hc(x) in z+y end
==> [5/x, 2/y, n/z] z+y
==> n

(for some integer n)

Staging

78

We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[g5][5/x] /
Evaluating g5(2)

==> [5/x, 2/y] let val z = hc(x) in z+y end
==> [5/x, 2/y, n/z] z+y
==> n

(for some integer n)

Staging

78

We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[g5][5/x] /
Evaluating g5(2)

==> [5/x, 2/y] let val z = hc(x) in z+y end
==> [5/x, 2/y, n/z] z+y
==> n

(for some integer n)10 months!

Staging

78

We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[g5][5/x] /
Evaluating g5(2)

==> [5/x, 2/y] let val z = hc(x) in z+y end
==> [5/x, 2/y, n/z] z+y
==> n

(for some integer n)

Similarly, g5(3) will take 10 months.

10 months!

Staging

78

We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[g5][5/x] /
Evaluating g5(2)

==> [5/x, 2/y] let val z = hc(x) in z+y end
==> [5/x, 2/y, n/z] z+y
==> n

(for some integer n)

Similarly, g5(3) will take 10 months.

Defining g in place of f has not yet helped!

10 months!

Staging

79

Staging

79

Recall the lambda expression for g:

Staging

79

Recall the lambda expression for g:

fn x => fn y => let val z = hc(x) in z+y end

Staging

79

Recall the lambda expression for g:

fn x => fn y => let val z = hc(x) in z+y end

Staging

79

Recall the lambda expression for g:

fn x => fn y => let val z = hc(x) in z+y end

Horrible
computation hidden

underneath inner lambda.

Staging

79

Recall the lambda expression for g:

fn x => fn y => let val z = hc(x) in z+y end

Let’s move this
computation here.

Horrible
computation hidden

underneath inner lambda.

Staging

79

Recall the lambda expression for g:

fn x => fn y => let val z = hc(x) in z+y end

Let’s move this
computation here.

Move is valid because the computation does not depend on y.

Horrible
computation hidden

underneath inner lambda.

Staging

79

Recall the lambda expression for g:

fn x => fn y => let val z = hc(x) in z+y end

Let’s move this
computation here.

Move is valid because the computation does not depend on y.

Such rearrangement of code — putting it in the “right spot” —
we refer to as staging.

Horrible
computation hidden

underneath inner lambda.

Staging

80

Staging

80

Let’s stage properly:

Staging

80

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Staging

80

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Staging

80

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Inner lambda free
of hc(x)!

Staging

80

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Now the type of h is (* h : int -> int -> int *),

Inner lambda free
of hc(x)!

Staging

80

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Now the type of h is (* h : int -> int -> int *)
so we can define

,

Inner lambda free
of hc(x)!

Staging

80

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Now the type of h is (* h : int -> int -> int *)
so we can define val h5 : int -> int = h(5)

,

Inner lambda free
of hc(x)!

Staging

80

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Now the type of h is (* h : int -> int -> int *)
so we can define val h5 : int -> int = h(5)

,

and then evaluate

Inner lambda free
of hc(x)!

Staging

80

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Now the type of h is (* h : int -> int -> int *)
so we can define val h5 : int -> int = h(5)

,

and then evaluate h5 (2)

Inner lambda free
of hc(x)!

Staging

80

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Now the type of h is (* h : int -> int -> int *)
so we can define val h5 : int -> int = h(5)

,

and then evaluate h5 (2)

h5 (3)

Inner lambda free
of hc(x)!

Staging

80

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Now the type of h is (* h : int -> int -> int *)
so we can define val h5 : int -> int = h(5)

,

and then evaluate h5 (2)

h5 (3)

How long do the 3 lines above take?

Inner lambda free
of hc(x)!

Staging

81

How long do the 3 lines above take?

Staging

81

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

Staging

81

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

Staging

81

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates

Staging

81

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)

Staging

81

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)

Staging

81

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end

Staging

81

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end
==> [5/x, n/z] fn y => z+y (for some integer n)

Staging

81

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end
==> [5/x, n/z] fn y => z+y (for some integer n)

Staging

81

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end
==> [5/x, n/z] fn y => z+y (for some integer n)

10 months!

Staging

82

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end
==> [5/x, n/z] fn y => z+y (for some integer n)

10 months!

Staging

82

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end
==> [5/x, n/z] fn y => z+y (for some integer n)

10 months! This is a lambda, and
thus s a value!

Staging

83

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end
==> [5/x, n/z] fn y => z+y (for some integer n)

10 months!

Staging

83

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end
==> [5/x, n/z] fn y => z+y (for some integer n)

10 months!

Staging

83

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end
==> [5/x, n/z] fn y => z+y (for some integer n)

10 months! This is the closure
returned by h(5).

Staging

84

Staging

84

We now have the following binding:

Staging

84

We now have the following binding:

fn y => z+y

env[h5][5/x, n/z] /

Staging

84

We now have the following binding:

fn y => z+y

env[h5][5/x, n/z] /
Evaluating h5(2)

Staging

84

We now have the following binding:

fn y => z+y

env[h5][5/x, n/z] /
Evaluating h5(2)

==> [5/x, n/z, 2/y] z+y

Staging

84

We now have the following binding:

fn y => z+y

env[h5][5/x, n/z] /
Evaluating h5(2)

==> [5/x, n/z, 2/y] z+y
==> n’ (for some integer n’)

Staging

84

We now have the following binding:

fn y => z+y

env[h5][5/x, n/z] /
Evaluating h5(2)

==> [5/x, n/z, 2/y] z+y
==> n’ (for some integer n’)

Staging

84

We now have the following binding:

fn y => z+y

env[h5][5/x, n/z] /
Evaluating h5(2)

==> [5/x, n/z, 2/y] z+y
==> n’ (for some integer n’)quick!

Staging

84

We now have the following binding:

fn y => z+y

env[h5][5/x, n/z] /
Evaluating h5(2)

==> [5/x, n/z, 2/y] z+y
==> n’ (for some integer n’)

Similarly, h5(3) will be very quick.

quick!

Staging

84

We now have the following binding:

fn y => z+y

env[h5][5/x, n/z] /
Evaluating h5(2)

==> [5/x, n/z, 2/y] z+y
==> n’ (for some integer n’)

Similarly, h5(3) will be very quick.

Factoring hc(x) out of the inner lambda has improved efficiency!

quick!

Staging

85

Staging

85

Summary:

Staging

85

Summary:

f (5,2)

f (5,3)
> 10 months

> 10 months

Staging

85

Summary:

f (5,2)

f (5,3)
> 10 months

> 10 months

val g5 = g(5)

g5 (2)
fast

> 10 months
g5 (3) > 10 months

Staging

85

Summary:

f (5,2)

f (5,3)
> 10 months

> 10 months

val g5 = g(5)

g5 (2)
fast

> 10 months
g5 (3) > 10 months

val h5 = h(5)

h5 (2)
> 10 months

fast
h5 (3) fast

That's all for today. Have a good weekend!

86

