Higher-Order Functions Il: Staging

15-150
Lecture 11; October 2, 2025

Stephanie Balzer
Carnegie Mellon University

L et's revisit foldl and foldr on lists

Higher-order function: fold

Combining elements in a list, given a binary operation and base value:

(x fold: ('a % 'b —> 'b) —> 'b —> 'a list —> 'b %)

Higher-order function: fold

Combining elements in a list, given a binary operation and base value:

(x fold: [('a %« 'b —> 'b)| —> 'b —> 'a list —> 'b *)

combining function:

“a: type of list elements

‘b: type of base value and
of combined value

Higher-order function: fold

Combining elements in a list, given a binary operation and base value:

(x fold: [('a * 'b — 'b)| —=>|['b —>|"'a list —> 'b *)

combining function: initial value

“a: type of list elements

‘b: type of base value and
of combined value

Higher-order function: fold

Combining elements in a list, given a binary operation and base value:

(x fold: [('a % 'b — 'b)| —=>['b —||'a list|—> 'b *)

combining function: initial value
‘a: type of list elements ist to be combined
‘b: type of base value and

of combined value

Higher-order function: fold

Combining elements in a list, given a binary operation and base value:

(x fold: [('a % 'b — 'b)| —>['b —>||'a list|—>]|'b|x*)

combining function: initial value
‘a: type of list elements ist to be combined
‘b: type of base value and

of combined value combined value

Higher-order function: fold

Combining elements in a list, given a binary operation and base value:

(x fold: ('a % 'b —> 'b) —> 'b —> 'a list —> 'b %)

Higher-order function: fold

Combining elements in a list, given a binary operation and base value:

(x fold: ('a % 'b —> 'b) —> 'b —> 'a list —> 'b %)

Two implementations:

112

foldl f z [x1,.,Xn] f(Xn,f(xs3, f(x2,f(x1,2))))

112

foldr f z [X1,..,Xn] f(X1,.f(Xn-2, f(Xn-1, F(Xn,2))))

Higher-order function: fold

Combining elements in a list, given a binary operation and base value:

(x fold: ('a % 'b —> 'b) —> 'b —> 'a list —> 'b %)

Two implementations:

112

foldl f z [x1,.,Xn] f(Xn,f(xs3, f(x2,f(x1,2))))

112

foldr f z [X1,..,Xn] f(X1,.f(Xn-2, f(Xn-1, F(Xn,2))))

Higher-order function: fold

Combining elements in a list, given a binary operation and base value:

(x fold: ('a % 'b —> 'b) —> 'b —> 'a list —> 'b %)

Two implementations:

112

foldl f z [x1,.,Xn] f(Xn,f(xs3, f(x2,f(x1,2))))

112

foldr f z [X1,..,Xn] f(X1,.f(Xn-2, f(Xn-1, F(Xn,2))))

<

Higher-order function: fold

Combining elements in a list, given a binary operation and base value:

(x fold: ('a % 'b —> 'b) —> 'b —> 'a list —> 'b %)

Two implementations:

112

foldl f z [x1,.,Xn] f(Xn,f(xs3, f(x2,f(x1,2))))

112

foldr f z [X1,..,Xn] f(X1,.f(Xn-2, f(Xn-1, F(Xn,2))))

<

Examples:
foldl (op -) 0 [1,2,3,4] ==> 2

Higher-order function: fold

Combining elements in a list, given a binary operation and base value:

(x fold: ('a % 'b —> 'b) —> 'b —> 'a list —> 'b %)

Two implementations:

112

foldl f z [x1,.,Xn] f(Xn,f(xs3, f(x2,f(x1,2))))

112

foldr f z [X1,..,Xn] f(X1,.f(Xn-2, f(Xn-1, F(Xn,2))))

<

Examples:
foldl (Op —) 0 [1,2,3,4] ==> 2 (4—(3—(2—(1—@))))

Higher-order function: fold

Combining elements in a list, given a binary operation and base value:

(x fold: ('a % 'b —> 'b) —> 'b —> 'a list —> 'b %)

Two implementations:

112

foldl f z [x1,.,Xn] f(Xn,f(xs3, f(x2,f(x1,2))))

112

foldr f z [X1,..,Xn] f(X1,.f(Xn-2, f(Xn-1, F(Xn,2))))

<

Examples:
foldl (op -) 0 [1,2,3,4] ==> 2
foldr (op =) 0 [1,2,3,4] ==> ~2

Higher-order function: fold

Combining elements in a list, given a binary operation and base value:

(x fold: ('a % 'b —> 'b) —> 'b —> 'a list —> 'b %)

Two implementations:

112

foldl f z [x1,.,Xn] f(Xn,f(xs3, f(x2,f(x1,2))))

112

foldr f z [X1,..,Xn] f(X1,.f(Xn-2, f(Xn-1, F(Xn,2))))

<

Examples:
foldl (op -) 0 [1,2,3,4] ==> 2
foldr (op =) 0 [1,2,3,4] ==> ~2 (1-(2-(3-(4-0))))

Higher-order function: fold

Higher-order function: fold

Let’s implement foldl and foldr:
(x fold: ('a *x 'b —=> 'b) —> 'b —> 'a list —> 'b x)

Higher-order function: fold

Let’s implement foldl and foldr:
(x fold: ('a x 'b —=> 'b) —> 'b —> 'a list —> 'b x)
fun foldl f z [] =

| foldl f z (x::xs) =

Higher-order function: fold

Let’s implement foldl and foldr:
(x fold: ('a x 'b —=> 'b) —> 'b —> 'a list —> 'b x)
fun foldl f z [] = z

| foldl f z (x::xs) =

Higher-order function: fold

Let’s implement foldl and foldr:
(x fold: ('a *x 'b —> 'b) —> 'b —> 'a list —> 'b x)
fun foldl f z [] = z

| foldl f z (x::xs) = foldl f (f(x,z)) xs

Higher-order function: fold

Let’s implement foldl and foldr:
(x fold: ('a *x 'b —> 'b) —> 'b —> 'a list —> 'b x)
fun foldl f z [] = z

| foldl f z (x::xs) = foldl f (f(x,z)) xs

fun foldr f z [] =
| foldr f z (x::xs) =

10

Higher-order function: fold

Let’s implement foldl and foldr:
(x fold: ('a *x 'b —> 'b) —> 'b —> 'a list —> 'b x)
fun foldl f z [] = z

| foldl f z (x::xs) = foldl f (f(x,z)) xs

fun foldr f z [] = z
| foldr f z (x::xs) =

11

Higher-order function: fold

Let’s implement foldl and foldr:
(x fold: ('a *x 'b —> 'b) —> 'b —> 'a list —> 'b x)
fun foldl f z [] = z

| foldl f z (x::xs) = foldl f (f(x,z)) xs

fun foldr f z [] = z
| foldr f z (x::xs) = f(x, foldr f z xs)

12

Higher-order function: fold

Let’s implement foldl and foldr:
(x fold: ('a x 'b —> 'b) —> 'b —> 'a list —> 'b *)
fun foldl f z [] = z

| foldl f z (x::xs) = foldl f (f(x,z)) xs

fun foldr f z [] = z
| foldr f z (x::xs) = f(x, foldr f z xs)

Homework:

foldl (op ::) [] [1,2,3,4] ==> 7
foldr (op ::) [] [1,2,3,4] ==> 7

12

Map and fold over trees and other datatypes

Can we generalize map and fold"?

14

Can we generalize map and fold"?

So fare we have considered map and fold exclusively for lists.

14

Can we generalize map and fold"?

So fare we have considered map and fold exclusively for lists.

-} map: transform elements in a list, given a transformation function

14

Can we generalize map and fold"?

So fare we have considered map and fold exclusively for lists.

-} map: transform elements in a list, given a transformation function

fold: combines elements in a list, given a binary operation and

base value

14

Can we generalize map and fold"?

So fare we have considered map and fold exclusively for lists.

-} map: transform elements in a list, given a transformation function

fold: combines elements in a list, given a binary operation and

base value

Can we generalize map and fold to, for example, binary trees”?

14

Can we generalize map and fold"?

So fare we have considered map and fold exclusively for lists.

-} map: transform elements in a list, given a transformation function

fold: combines elements in a list, given a binary operation and

base value

Can we generalize map and fold to, for example, binary trees”?

-} Yes! Let’'s work it out.

14

Can we generalize map and fold"?

So fare we have considered map and fold exclusively for lists.

-} map: transform elements in a list, given a transformation function

fold: combines elements in a list, given a binary operation and

base value

Can we generalize map and fold to, for example, binary trees”?

-} Yes! Let’'s work it out.

-

It may be helpful to visualize map and fold for lists

diagrammatically first, to capture the underlying pattern.

14

The "pattern” underlying map

The "pattern” underlying map

(x map: ('a —> 'b) —> 'a list —> 'b list x)

15

The "pattern” underlying map

(x map: ('a —> 'b) —> 'a list —> 'b list x)

15

The "pattern” underlying map

(x map: ('a —> 'b) —> 'a list —> 'b list x)

map f

15

The "pattern” underlying map

(x map: ('a —> 'b) —> 'a list —> 'b list x)

map f

15

The "pattern” underlying map

(x map: ('a —> 'b) —> 'a list —> 'b list x)

map f

16

The "pattern” underlying map

(x map: ('a —> 'b) —> 'a list —> 'b list x)

map f

-} Replace every element value vi with its transformed value f(vi).

16

The "pattern” underlying map

(x map: ('a —> 'b) —> 'a list —> 'b list x)

map f

-} Replace every element value vi with its transformed value f(vi).

17

The “pattern” underlying fold

The “pattern” underlying fold

(x fold: ('a x 'b —> 'b) —> 'b —> 'a list ->

'b x)

18

The “pattern” underlying fold

(x fold: ('a x 'b —> 'b) —> 'b —> 'a list ->

'b x)

18

The “pattern” underlying fold

(x fold: ('a x 'b —> 'b) —> 'b —> 'a list ->

foldfz
ﬁ

'b x)

18

The “pattern” underlying fold

(x fold: ('a x 'b —> 'b) —> 'b —> 'a list ->

foldfz
ﬁ

'b x)

18

The “pattern” underlying fold

(x fold: ('a x 'b —> 'b) —> 'b —> 'a list ->

foldfz
ﬁ

'b x)

19

The “pattern” underlying fold

(x fold: ('a * 'b —> 'b) —> 'b —> 'a list —> 'b x)

foldfz
ﬁ

-} Replace every constructor with a function or value.

19

The “pattern” underlying fold

(x fold: ('a * 'b —> 'b) —> 'b —> 'a list —> 'b x)

foldfz
ﬁ

-} Replace every constructor with a function or value.

20

The “pattern” underlying fold

(x fold: ('a * 'b —> 'b) —> 'b —> 'a list —> 'b x*)

n-ary constructors

become n-ary functions

foldfz
ﬁ

-} Replace every constructor with a function or value.

20

Map and fold for binary trees

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

21

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)

22

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty =

23

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty

24

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty
| tmap f (Node(1l,x,r)) =

25

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty
| tmap f (Node(1l,x,r)) = Node()

26

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty
| tmap f (Node(l,x,r)) = Node(tmap f 1, f x, tmap T r)

27

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty
| tmap f (Node(l,x,r)) = Node(tmap f 1, f x, tmap T r)

(x tfold : ('b *x 'a x 'b —> 'b) —> 'b —> 'a tree —> 'b %)

28

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty
| tmap f (Node(l,x,r)) = Node(tmap f 1, f x, tmap T r)

(x tfold : d'b * 'a x 'b‘—> 'b) —> 'b —> 'a tree —> 'b x)

28

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a — 'b) — 'a by tree x)
fun tmap f Empty = Emp same number

| tmap f (Node(l,x,r) of arguments as x, tmap f r)
constructor

(x tfold : d'b * 'a x 'b‘—> 'b) —> 'b —> 'a tree —> 'b x)

28

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a — 'b) — 'a by tree x)
fun tmap f Empty = Emp same number

| tmap f (Node(l,x,r) of arguments as x, tmap f r)
constructor

(x tfold : (I'b *x 'a x 'b‘—> 'b) —> 'b —> 'a tree —> 'b x)

result of fold

of left subtree

28

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a — 'b) — 'a by tree x)
fun tmap f Empty = Emp same number

| tmap f (Node(l,x,r) of arguments as x, tmap f r)
constructor

(x tfold : (I'b *x 'a x 'p‘—> 'b) —> 'b —> 'a tree —> 'b x)

result of fold
of left subtree

result of fold
of right subtree

28

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a — 'b) — 'a by tree x)
fun tmap f Empty = Emp same number

| tmap f (Node(l,x,r) of arguments as x, tmap f r)
constructor

(x tfold : (I'b *x 'a x 'p‘—> 'b) —> 'b —> 'a tree —> 'b x)

result of fold base value for
of left subtree

result of fold empty
of right subtree

28

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty
| tmap f (Node(l,x,r)) = Node(tmap f 1, f x, tmap T r)

(x tfold : ('b *x 'a x 'b —> 'b) —> 'b —> 'a tree —> 'b %)

29

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty
| tmap f (Node(l,x,r)) = Node(tmap f 1, f x, tmap T r)

(x tfold : ('b x 'a x '"b —> 'b) —> 'b —> 'a tree —> 'b %)
fun tfold f z Empty =

30

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty
| tmap f (Node(l,x,r)) = Node(tmap f 1, f x, tmap T r)

(x tfold : ('b x 'a x '"b —> 'b) —> 'b —> 'a tree —> 'b %)
fun tfold f z Empty = z

31

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty
| tmap f (Node(l,x,r)) = Node(tmap f 1, f x, tmap T r)

(x tfold : ('b x 'a x '"b —> 'b) —> 'b —> 'a tree —> 'b %)
fun tfold f z Empty = z
| tfold f z (Node (1, x, r)) =

32

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty
| tmap f (Node(l,x,r)) = Node(tmap f 1, f x, tmap T r)

(x tfold : ('b x 'a x '"b —> 'b) —> 'b —> 'a tree —> 'b %)
fun tfold f z Empty = z
| tfold f z (Node (1, x, r)) =
f()

33

Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty
| tmap f (Node(l,x,r)) = Node(tmap f 1, f x, tmap T r)

(x tfold : ('b *x 'a *x 'b —> 'b) —> 'b —> 'a tree —> 'b x)
fun tfold f z Empty = z
| tfold f z (Node (1, x, r)) =
f (tfold f z 1, x, tfold f z r)

34

Examples for tmap and tfold

Examples for tmap and tfold

val stringify = tmap Int.toString

val treesum = tfold (fn (a,x,b) => a+x+b) 0

35

Examples for tmap and tfold

val stringify = tmap Int.toString

val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

36

Examples for tmap and tfold

val stringify = tmap Int.toString

val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(x stringify : *)

37

Examples for tmap and tfold

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)

val stringify = tmap Int.toString

val treesum

tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(x stringify : *)

38

Examples for tmap and tfold

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)

val stringify = tmap Int.toString

val treesum

tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(x stringify : int tree —> string tree x)

39

Examples for tmap and tfold

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)

val stringify = tmap Int.toString

val treesum

tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(x stringify : int tree —> string tree x)

(x treesum : *)

40

Examples for tmap and tfold

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)

val stringify = tmap Int.toString

(x tfold : ('b *x 'a * 'b —> 'b) —> 'b —> 'a tree —>
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(x stringify : int tree —> string tree x)

(x treesum : *)

'b %)

41

Examples for tmap and tfold

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)

val stringify = tmap Int.toString

(x tfold : ('b *x 'a * 'b —> 'b) —> 'b —> 'a tree —>
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(x stringify : int tree —> string tree x)

(x treesum : int tree —> int x)

'b %)

42

Map and fold for leafy binary trees

Map and fold for leafy binary trees

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

43

Map and fold for leafy binary trees

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(x lmap: ('a —> 'b) —> 'a leafy —> 'b leafy x)

44

Map and fold for leafy binary trees

{

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(x lmap: ('a —> 'b) —> 'a leafy —> 'b leafy x)
fun lmap f Leaf(x) =

45

Map and fold for leafy binary trees

{

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(x lmap: ('a —> 'b) —> 'a leafy —> 'b leafy x)
fun lmap f Leaf(x) = Leaf(f x)

46

Map and fold for leafy binary trees

{

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(x lmap: ('a —> 'b) —> 'a leafy —> 'b leafy x)
fun lmap f Leaf(x) = Leaf(f x)
| lmap f (Node(1l,r)) =

47

Map and fold for leafy binary trees

{

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(* lmap: ('a —> 'b) —> 'a leafy —> 'b leafy %)
fun lmap f Leaf(x) = Leaf(f x)
| Tlmap f (Node(1l,r)) = Node(lmap f 1, lmap f r)

48

Map and fold for leafy binary trees

{

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(* lmap: ('a —> 'b) —> 'a leafy —> 'b leafy %)
fun lmap f Leaf(x) = Leaf(f x)
| Tlmap f (Node(1l,r)) = Node(lmap f 1, lmap f r)

(x Lfold: ('bx'b —> 'b) —> ('a—>"'b) —> 'a leafy —> 'b x)

49

Map and fold for leafy binary trees

{

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(* lmap: ('a —> 'b) —> 'a leafy —> 'b leafy %)
fun lmap f Leaf(x) = Leaf(f x)
| Tlmap f (Node(1l,r)) = Node(lmap f 1, lmap f r)

(x Lfold: ('bx'b —> 'b) —> ('a—>"'b) —> 'a leafy —> 'b x)

fun 1fold f g Leaf(x) =

50

Map and fold for leafy binary trees

{

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(* lmap: ('a —> 'b) —> 'a leafy —> 'b leafy %)
fun lmap f Leaf(x) = Leaf(f x)
| Tlmap f (Node(1l,r)) = Node(lmap f 1, lmap f r)

(x Lfold: ('bx'b —> 'b) —> ('a—>"'b) —> 'a leafy —> 'b x)

fun 1fold f g Leaf(x) = g(x)

51

Map and fold for leafy binary trees

{

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(* lmap: ('a —> 'b) —> 'a leafy —> 'b leafy %)
fun lmap f Leaf(x) = Leaf(f x)
| Tlmap f (Node(1l,r)) = Node(lmap f 1, lmap f r)

(x Lfold: ('bx'b —> 'b) —> ('a—>"'b) —> 'a leafy —> 'b x)

fun 1fold f g Leaf(x) = g(x)
| 1fold f g (Node (1, r)) =

52

Map and fold for leafy binary trees

{

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(* lmap: ('a —> 'b) —> 'a leafy —> 'b leafy %)
fun lmap f Leaf(x) = Leaf(f x)
| Tlmap f (Node(1l,r)) = Node(lmap f 1, lmap f r)

(x Lfold: ('bx'b —> 'b) —> ('a—>"'b) —> 'a leafy —> 'b x)

fun 1fold f g Leaf(x) = g(x)
| 1fold f g (Node (1, r)) =
f (1fold f g 1, 1fold f g r)

93

Examples for Imap and Ifold

Examples for Imap and Ifold

(x lmap: ('a —> 'b) —> 'a leafy —> 'b leafy x)
val lstringify = lmap Int.toString

(x 1fold: ('bx'b —> 'b) —> ('a->"'b) —> 'a leafy —> 'b x)
val leafysum = 1fold (op +) (fn x => x)

54

Examples for Imap and Ifold

(x lmap: ('a —> 'b) —> 'a leafy —> 'b leafy x)
val lstringify = lmap Int.toString

(x 1fold: ('bx'b —> 'b) —> ('a->"'b) —> 'a leafy —> 'b x)
val leafysum = 1fold (op +) (fn x => x)

What are the types of Ltringify and leafysum?

95

Examples for Imap and Ifold

(x lmap: ('a —> 'b) —> 'a leafy —> 'b leafy x)
val lstringify = lmap Int.toString

(x Lfold: ('bx'b —> 'b) —> ('a—>"'b) —> 'a leafy —> 'b x)
val leafysum = 1fold (op +) (fn x => x)
What are the types of Ltringify and leafysum?

(x 1stringify : int leafy —> string leafy)

(x leafysum : int leafy —> int x)

o6

Map and fold for non-recursive datatypes

Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

o7

Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option)

58

Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option)
fun opmap T NONE =

99

Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option)
fun opmap f NONE = NONE

60

Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option)
fun opmap f NONE = NONE
| opmap f (SOME x) =

61

Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option)
fun opmap f NONE = NONE
| opmap f (SOME x) = SOME (f x)

62

Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option)
fun opmap f NONE = NONE
| opmap f (SOME x) = SOME (f x)

(x opfold: ('a—> 'b) —> 'b —> 'a option —> 'b x*)

63

Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option)
fun opmap f NONE = NONE
| opmap f (SOME x) = SOME (f x)

(x opfold: ('a—> 'b) —> 'b —> 'a option —> 'b x*)
fun opfold f z NONE

64

Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option)
fun opmap f NONE = NONE
| opmap f (SOME x) = SOME (f x)

(x opfold: ('a—> 'b) —> 'b —> 'a option —> 'b x*)
fun opfold f z NONE = z

65

Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option)
fun opmap f NONE = NONE
| opmap f (SOME x) = SOME (f x)

(x opfold: ('a—> 'b) —> 'b —> 'a option —> 'b x*)
fun opfold f z NONE = z
| opfold f z (SOME x) =

66

Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option)
fun opmap f NONE = NONE
| opmap f (SOME x) = SOME (f x)

(x opfold: ('a—> 'b) —> 'b —> 'a option —> 'b x*)
fun opfold f z NONE = z
| opfold f z (SOME x) = f Xx

67

Examples for opmap and opfold

Examples for opmap and opfold

(x opmap: ('a —> 'b) —> 'a option —> 'b option)

val ostringify = opmap Int.toString

(x opfold: ('a—> 'b) —> 'b —> 'a option —> 'b x*)
val osum = opfold (fn x => x) O

68

Examples for opmap and opfold

(x opmap: ('a —> 'b) —> 'a option —> 'b option)

val ostringify = opmap Int.toString

(x opfold: ('a—> 'b) —> 'b —> 'a option —> 'b x*)
val osum = opfold (fn x => x) O

What are the types of otringify and osum?

69

Examples for opmap and opfold

(x opmap: ('a —> 'b) —> 'a option —> 'b option)

val ostringify = opmap Int.toString

(x opfold: ('a—> 'b) —> 'b —> 'a option —> 'b x*)
val osum = opfold (fn x => x) 0

What are the types of otringify and osum?

(x ostringify : int option —> string option x)

(x osum : int option —> int x)

70

Staging

Another use of HOF: Staging

Another use of HOF: Staging

Staging is a coding technigue
that has a function perform useful work
prior to receiving all its arguments.

72

Another use of HOF: Staging

Staging is a coding technigue
that has a function perform useful work
prior to receiving all its arguments.

-} Concern: efficiency (“cost”) of evaluation

72

Another use of HOF: Staging

Staging is a coding technigue
that has a function perform useful work
prior to receiving all its arguments.

-} Concern: efficiency (“cost”) of evaluation

-} Employs partial application

72

Another use of HOF: Staging

Staging is a coding technigue
that has a function perform useful work
prior to receiving all its arguments.

-} Concern: efficiency (“cost”) of evaluation

-} Employs partial application

-} to factor out expensive part

72

Another use of HOF: Staging

Staging is a coding technigue
that has a function perform useful work
prior to receiving all its arguments.

-} Concern: efficiency (“cost”) of evaluation

-} Employs partial application

-} to factor out expensive part

-} to specialize inexpensive part for specific argument.

72

Another use of HOF: Staging

Staging is a coding technigue
that has a function perform useful work
prior to receiving all its arguments.

-} Concern: efficiency (“cost”) of evaluation

-} Employs partial application

-} to factor out expensive part

-} to specialize inexpensive part for specific argument.

-} Improves efficiency when specialized function used many times.

72

Staging

Staging

Consider the following function:

73

Staging

Consider the following function:

fun f (x:int, y:int) : int =
let
val z : int = horriblecomputation(x)
in
zZ + Yy
end

73

Staging

Consider the following function:

fun f (x:int, y:int) : int =
let
val z : int = horriblecomputation(x)
in
zZ + Yy
end

Suppose the horrible computation takes 10 months.
(And suppose that addition takes a picosecond.)

73

Staging

Consider the following function:

fun f (x:int, y:int) : int =
let

val z : int = horriblecomputation(x)
in

Z +y
end

Suppose the horrible computation takes 10 months.
(And suppose that addition takes a picosecond.)

Then each of these expressions takes at least 10 months to evaluate:

f (5,2)
f (5,3)

73

Staging

Consider the following function:

fun f (x:int, y:int) : int =
let

val z : int = horriblecomputation(x)
in

Z +y
end

Suppose the horrible computation takes 10 months.
(And suppose that addition takes a picosecond.)

Then each of these expressions takes at least 10 months to evaluate:

f (5,2)
f (5,3)

—} If only we could recall horriblecomputation(5)!

Staging

Consider the following function:

fun f (x:int, y:int) : int =
let

val z : int = horriblecomputation(x)
in

Z +y
end

Suppose the horrible computation takes 10 months.
(And suppose that addition takes a picosecond.)

Then each of these expressions takes at least 10 months to evaluate:

: gg: :23; without mutation

—} If only we could recall horriblecomputation(5)!

Staging

Consider the following function:

fun f (x:int, y:int) : int =
let
val z : int = horriblecomputation(x)
in
zZ + Yy
end

74

Staging

Consider the following function:

fun f (x:int, y:int) : int =
let
val z : int = horriblecomputation(x)
in
zZ + Yy
end

What is the type of £7?

74

Staging

Consider the following function:

fun f (x:int, y:int) : int =
let
val z : int = horriblecomputation(x)
in
zZ + Yy
end

What is the type of £7?

(x f : int % int —> int x)

74

Staging

Consider the following function:

fun f (x:int, y:int) : int =
let

val z : int = horriblecomputation(x)
in

Z +y
end

What is the type of £7?

(x f : int % int —> int x)

-} Maybe currying can help?

74

Staging

Consider the following function:

fun f (x:int, y:int) : int =
let

val z : int = horriblecomputation(x)
in

Z +y
end

What is the type of £7?

(x f : int % int —> int x)

-} Maybe currying can help?

-} Let’s define a curried version of f!

74

Staging

Curried version of f;

fun g (x:int) (y:int)
let
val z : 1int =
in
Z + Yy
end

» 1nt

horriblecomputation(x)

75

Staging

Curried version of f;

fun g (x:int) (y:int)
let
val z : 1int =
in
Z + Yy
end

Now the type of g Is

» 1nt

horriblecomputation(x)

75

Staging

Curried version of f;

fun g (x:int) (y:int)
let

» 1nt

val z : int = horriblecomputation(x)

1in
Z + Yy
end

Now the type of gis (x g :

int —> int —> int x),

75

Staging

Curried version of f;

fun g (x:int) (y:int)
let

» 1nt

val z : int = horriblecomputation(x)

1in
Z + Yy
end

Now the type of gis (x g :

SO we can define

int —> int —> int x),

75

Staging

Curried version of f;

fun g (x:int) (y:int)
let

» 1nt

val z : int = horriblecomputation(x)

1in
Z + Yy
end

Now the type of gis (x g :

SO we can define val g5 :

int —> int —> int x),
int => int = g(5)

75

Staging

Curried version of f;

fun g (x:int) (y:int)
let

» 1nt

val z : int = horriblecomputation(x)

1in
Z + Yy
end

Now the type of gis (x g :

SO we can define val g5 :

and then evaluate

int —> int —> int x),
int => int = g(5)

75

Staging

Curried version of f;

fun g (x:int) (y:int)
let

» 1nt

val z : int = horriblecomputation(x)

1in
Z + Yy
end

Now the type of gis (x g :

SO we can define val g5 :

and then evaluate g5 (2)

int —> int —> int x),
int => int = g(5)

75

Staging

Curried version of f;

fun g (x:int) (y:int) : int
let
val z : int = horriblecomputation(x)
in
Z + Yy
end

Now thetype of gis (x g : int —> int —> int x*),
SO we can define val g5 : int —> int = g(5)

and then evaluate g5 (2) (% instead of f (5,2) *)

75

Staging

Curried version of f;

fun g (x:int) (y:int) : int
let
val z : int = horriblecomputation(x)
in
Z + Yy
end

Now thetype of gis (x g : int —> int —> int x*),
SO we can define val g5 : int —> int = g(5)

and then evaluate g5 (2) (% instead of f (5,2) *)

g5 (3)

75

Staging

Curried version of f;

fun g (x:int) (y:int) : int
let
val z : int = horriblecomputation(x)
in
Z + Yy
end

Now thetype of gis (x g : int —> int —> int x*),
SO we can define val g5 : int —> int = g(5)

and then evaluate g5 (2) (% instead of f (5,2) *)
g5 (3) (x instead of f (5,3))

75

Staging

Curried version of f;

fun g (x:int) (y:int) : int
let
val z : int = horriblecomputation(x)
in
Z + Yy
end
Now thetype of gis (x g : int —> int —> int x*),
SO we can define val g5 : int —> int = g(5)
and then evaluate g5 (2) (% instead of f (5,2) *)

g5 (3) (x instead of f (5,3))

-} How long do the 3 lines above take?

75

Staging

-} How long do the 3 lines above take?

/6

Staging

-} How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

/6

Staging

-} How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

/6

Staging

-} How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5), one evaluates

/6

Staging

-} How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5), one evaluates

[(fn x == fn y => let val z = hc(x) in z+y end)/g] g(5)

/6

Staging

-} How long do the 3 lines above take?
Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5), one evaluates

[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y == let val z = hc(x) in z+y end) (5)

/6

Staging

-} How long do the 3 lines above take?
Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5), one evaluates

[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x == fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

/6

Staging

-} How long do the 3 lines above take?
Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5), one evaluates

[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y == let val z = hc(x) in z+y end) (5)

==> [5/x]‘fn y => let val z = hc(x) in z+y end‘

/6

Staging

-} How long do the 3 lines above take?
Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5), one evaluates

[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y == let val z = hc(x) in z+y end) (5)

==> [5/x]‘fn y => let val z = hc(x) in z+y end‘

This Is a lambda, and

thus s a value!

/6

Staging

-} How long do the 3 lines above take?
Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5), one evaluates

[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y == let val z = hc(x) in z+y end) (5)

==> [5/x]‘fn y => let val z = hc(x) in z+y end‘

This i1s a lambda, and No application, and thus no

thus s a value! evaluation of body!

Staging

-} How long do the 3 lines above take?
Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5), one evaluates

[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x == fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

77

Staging

-} How long do the 3 lines above take?
Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5), one evaluates

[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y == let val z = hc(x) in z+y end) (5)

==>‘[5/x] fn y => let val z = hc(x) in z+y end‘

77

Staging

-} How long do the 3 lines above take?
Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5), one evaluates

[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y == let val z = hc(x) in z+y end) (5)

==>‘[5/x] fn y => let val z = hc(x) in z+y end‘

This Is the closure

returned by g(5).

77

Staging

-} How long do the 3 lines above take?
Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5), one evaluates

[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y == let val z = hc(x) in z+y end) (5)

==>‘[5/x] fn y => let val z = hc(x) in z+y end‘

This is the closure The horrible

returned by g(5).

computation has not yet
happened :-(

77

Staging

Staging

We now have the following binding:

78

Staging

We now have the following binding:

r

.

env

[5/X]

fny = let val z = hc(x) in z+y end

.

/8

Staging

We now have the following binding:

r

.

env

[5/x]
fny = let val z

hc(x) in z+y end

.

Evaluating g5(2)

/8

Staging

We now have the following binding:

/5]

-
env
[5/x]
fny = let val z = hc(x) in z+y end
4
Evaluating g5(2)

==> [5/x, 2/y] let val z

hc(x) in z+y end

/8

Staging

We now have the following binding:

r N

env

[5/x] 5
fn y == let val z = hc(x) in z+y end g

\. ,

Evaluating g5(2)
==> [5/x, 2/y] let val z = hc(x) in z+y end
==> [5/x, 2/y, n/z]l z+y (for some integer n)

Staging

We now have the following binding:

4)

env

[5/x] 5

fn y == let val z = hc(x) in z+y end g

\ J

Evaluating g5(2)

==> [5/x, 2/y] let val z = hc(x) in z+y end
==> [5/x, 2/y, n/z]l z+y (for some integer n)

==> I

/8

Staging

We now have the following binding:

e
env

[5/X]

.

fny = let val z = hc(x) in z+y end

.

Evaluating g5(2)
==> [5/x, 2/y] let val z
lﬁ=> [S/X, Z/y; n/zl Zt+y

==>

/a5 |

hc(x) in z+y end

(for some integer n)

/8

Staging

We now have the following binding:

e
env

[5/X]

.

fny = let val z = hc(x) in z+y end

.

Evaluating g5(2)
> [5/x, 2/y] let val z

lﬁ=> [S/X, Z/y; n/zl Zt+y
==> |

/a5 |

hc(x) in z+y end

(for some integer n)

/8

Staging

We now have the following binding:

r N

env

[5/x] 5
fn y == let val z = hc(x) in z+y end g

\. ,

Evaluating g5(2)
==> [5/x, 2/y] let val z = hc(x) in z+y end

Wl«__> [5/x, 2/y, n/z] z+y (for some integer n)
==> N

Similarly, g5(3) will take 10 months.

Staging

We now have the following binding:

r N

env

[5/x] 5
fn y == let val z = hc(x) in z+y end g

\. ,

Evaluating g5(2)
==> [5/x, 2/y] let val z = hc(x) in z+y end

Wl«__> [5/x, 2/y, n/z] z+y (for some integer n)
==> N

Similarly, g5(3) will take 10 months.

-} Defining g in place of f has not yet helped!

Staging

Staging

Recall the lambda expression for g:

79

Staging

Recall the lamlibda expression for Q:

fn x = fn y => let val z = hc(x) in z+y end

79

Staging

Recall the lamlibda expression for Q:

fnx == fny => let‘val Z = hc(x)‘in z+y end

79

Staging

Recall the lamlibda expression for Q:

fnx == fny => let‘val Z = hc(x)‘in z+y end

Horrible
computation hidden

underneath inner lambda.

79

Staging

Recall the lamlibda expression for Q:

fn x = fny => let‘val Z = hc(x)‘in z+y end

Let’'s move this
computation here.

Horrible
computation hidden

underneath inner lambda.

79

Staging

Recall the lamlibda expression for Q:

fn x = fny => let‘val Z = hc(x)‘in z+y end

Horrible
computation hidden

| et’s move this underneath inner lambda.
computation here.

-} Move is valid because the computation does not depend on .

79

Staging

Recall the lamlibda expression for Q:

fn x = fny => let‘val Z = hc(x)‘in z+y end

Horrible
computation hidden

| et’s move this underneath inner lambda.
computation here.

-} Move is valid because the computation does not depend on .

-

Such rearrangement of code — putting it in the “right spot” —

we refer to as staging.

79

Staging

Staging

Let’s stage properly:

80

Staging

Let’s stage properly:

fun h (x:int) : int —> int =

let
val z : 1nt
1in

horriblecomputation(x)

(fny : int => z + y)

end

80

Staging

Let’s stage properly:

fun h (x:int) : int —> int =
let

val z : int = horriblecomputation(x)
in

(fn y @ int => z + y)‘

eNa

Staging

Let’s stage properly:

fun h (x:int) : int —> int =
let

val z : int = horriblecomputation(x)

1in

(fny ¢ int == z + y)‘

eNa

Inner lambda free

of hc(x)!

80

Staging

Let’s stage properly:

fun h (x:int) : int —> int =

let

val z : int = horriblecomputation(x)

1in

(fny : int => z + y)| Inner lambda free

eNa

Now the type of his (% h

of hc(x)!

: int —> int —> int x),

80

Staging

Let’s stage properly:

fun h (x:int) : int —> int =

let

val z : int = horriblecomputation(x)

1in

(fny : int => z + y)| Inner lambda free

eNa

Now the type of his (% h
SO we can define

of hc(x)!

: int —> int —> int x),

80

Staging

Let’s stage properly:

fun h (x:int) : int —> int =

let

val z : int = horriblecomputation(x)

1in

(fny : int => z + y)| Inner lambda free

eNa

Now the type of his (% h

SO we can define val h5 :

of hc(x)!

: int —> int —> int x),

int => int = h(5)

80

Staging

Let’s stage properly:

fun h (x:int) : int —> int =
let
val z : int = horriblecomputation(x)

1in

(fny : int => z + y)| Inner lambda free
enc of hc(x)!

Now the type of his (x h : int —> int —-> int x*),
SO we can define val h5 : int —> int = h(5)
and then evaluate

80

Staging

Let’s stage properly:

fun h (x:int) : int —> int =
let
val z : int = horriblecomputation(x)

1in

(fny : int => z + y)| Inner lambda free
enc of hc(x)!

Now the type of his (x h : int —> int —-> int x*),
SO we can define val h5 : int —> int = h(5)
and then evaluate h5 (2)

80

Staging

Let’s stage properly:

fun h (x:int) : int —> int =
let
val z : int = horriblecomputation(x)

1in

(fny : int => z + y)| Inner lambda free
enc of hc(x)!

Now the type of his (x h : int —> int —-> int x*),
so we can define val h5 : int —> int = h(5)
and then evaluate h5 (2)

h5 (3)

80

Staging

Let’s stage properly:

fun h (x:int) : int —> int =
let
val z : int = horriblecomputation(x)

1in

(fny : int => z + y)| Inner lambda free
enc of hc(x)!

Now the type of his (x h : int —> int —-> int x*),
so we can define val h5 : int —> int = h(5)
and then evaluate h5 (2)

h5 (3)

-} How long do the 3 lines above take?

80

Staging

-} How long do the 3 lines above take?

81

Staging

-} How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

81

Staging

-} How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h]

81

Staging

-} How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5), one evaluates

81

Staging

-} How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5), one evaluates

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h] h(5)

81

Staging

-} How long do the 3 lines above take?
Remember, the declaration of h created the following binding:

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5), one evaluates

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)

81

Staging

-} How long do the 3 lines above take?
Remember, the declaration of h created the following binding:

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5), one evaluates

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end

81

Staging

-} How long do the 3 lines above take?
Remember, the declaration of h created the following binding:

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5), one evaluates

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end

==> [5/x, n/z] fny => z+y (for some integer n)

81

Staging

-} How long do the 3 lines above take?
Remember, the declaration of h created the following binding:

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5), one evaluates

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end

‘l==> [5/x, n/z] fny => z+y (for some integer n)

81

Staging

-} How long do the 3 lines above take?
Remember, the declaration of h created the following binding:

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5), one evaluates

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end

‘l==> [5/x, n/z] fny => z+y (for some integer n)

81

Staging

-} How long do the 3 lines above take?
Remember, the declaration of h created the following binding:

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5), one evaluates

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end

‘l==> [5/X, n/z]‘fn y => z+y‘ (for some integer n)

82

Staging

-} How long do the 3 lines above take?
Remember, the declaration of h created the following binding:

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5), one evaluates

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end

‘l==> [5/X, n/z]‘fn y => z+y‘ (for some integer n)

This Is a lambda, and

thus s a value!

82

Staging

-} How long do the 3 lines above take?
Remember, the declaration of h created the following binding:

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5), one evaluates

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end

‘l==> [5/x, n/z] fny => z+y (for some integer n)

83

Staging

-} How long do the 3 lines above take?
Remember, the declaration of h created the following binding:

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5), one evaluates

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)

l==> [5/x] let val z = hc(x) in fn y => z+y end

==> MS/X, n/z] fny => z+y‘ (for some integer n)

83

Staging

-} How long do the 3 lines above take?
Remember, the declaration of h created the following binding:

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5), one evaluates

[(fn x => 1let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)

l==> [5/x] let val z = hc(x) in fn y => z+y end

==> MS/X, n/z] fny => z+y‘ (for some integer n)

This Is the closure

returned by h(5).

83

Staging

Staging

We now have the following binding:

84

Staging

We now have the following binding:

r

.

~N
env

[5/x, n/z]

fny => z+y
J

/h5 |

84

Staging

We now have the following binding:

r

.

~N
env

[5/x, n/z]

fny => z+y
J

Evaluating h5(2

/h5 |

84

Staging

We now have the following binding:

r

.

Evaluating h5(2

==> [5/Xx, n/z,

\
env
[5/%, n/z] h 5
fny => z+y
J
)

84

Staging

We now have the following binding:

r

.

Evaluating h5(2

\
env
[5/%, n/z] h 5
fny => z+y
J
)

==> [5/x, n/z, 2/y] z+y

==> n'

(for some integer n”’)

84

Staging

We now have the following binding:

r

.

Evaluating h5(2

\
env
[5/%, n/z] h 5
fny => z+y
J
)

lé=> [5/x, n/z, 2/y] z+y

==> n'

(for some integer n”’)

84

Staging

We now have the following binding:

r

.

\
env
[5/%, n/z] h 5
fny => z+y

J

Evaluating h5(2)
==> [5/x, n/z, 2/y] z+y

(for some integer n”’)

84

Staging

We now have the following binding:

4)
env
[5/%, n/z] h 5
fny => z+y

- J

Evaluating h5(2)
==> [5/x, n/z, 2/y] z+y

w ‘L==> n' (for some integer n’)

Similarly, h5(3) will be very quick.

84

Staging

We now have the following binding:

4)
env
[5/%, n/z] h 5
fny => z+y

- J

Evaluating h5(2)
==> [5/x, n/z, 2/y] z+y

w ‘L==> n’ (for someinteger n’)

Similarly, h5(3) will be very quick.

-} Factoring hc (x) out of the inner lambda has improved efficiency!

Staging

Staging

Summary:

85

Staging

Summary:

f (5,2)
f (5,3)

> 10 months

> 10 months

85

Staging

Summary:

f (5,2)
f (5,3)

val g5 = g(5)
g5 (2)
g5 (3)

> 10 months

> 10 months

fast
> 10 months

> 10 months

85

Staging

Summary:

f (5,2)
f (5,3)

Il

(@]
—
Un
~—"

val g5
g5 (2)
g5 (3)

val h5
h5 (2)
h5 (3)

h(5)

> 10 months

> 10 months

fast
> 10 months

> 10 months

> 10 months
fast

fast

85

That's all for today. Have a good weekend!

