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L et's revisit foldl and foldr on lists
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Combining elements in a list, given a binary operation and base value:

(x fold: ('a % 'b —> 'b) —> 'b —> 'a list —> 'b %)
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Higher-order function: fold

Combining elements in a list, given a binary operation and base value:

(x fold: ('a % 'b —> 'b) —> 'b —> 'a list —> 'b %)

Two implementations:

112

foldl f z [x1,.,Xn] f(Xn,f(xs3, f(x2,f(x1,2))))

112

foldr f z [X1,..,Xn] f(X1,.f(Xn-2, f(Xn-1, F(Xn,2))))

<

Examples:
foldl (op -) 0 [1,2,3,4] ==> 2
foldr (op =) 0 [1,2,3,4] ==> ~2 (1-(2-(3-(4-0))))
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Let’s implement foldl and foldr:
(x fold: ('a *x 'b —> 'b) —> 'b —> 'a list —> 'b x)
fun foldl f z [] = z

| foldl f z (x::xs) = foldl f (f(x,z)) xs

fun foldr f z [] =
| foldr f z (x::xs) =

10



Higher-order function: fold

Let’s implement foldl and foldr:
(x fold: ('a *x 'b —> 'b) —> 'b —> 'a list —> 'b x)
fun foldl f z [] = z
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Higher-order function: fold

Let’s implement foldl and foldr:
(x fold: ('a *x 'b —> 'b) —> 'b —> 'a list —> 'b x)
fun foldl f z [] = z

| foldl f z (x::xs) = foldl f (f(x,z)) xs

fun foldr f z [] = z
| foldr f z (x::xs) = f(x, foldr f z xs)
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Higher-order function: fold

Let’s implement foldl and foldr:
(x fold: ('a x 'b —> 'b) —> 'b —> 'a list —> 'b *)
fun foldl f z [] = z

| foldl f z (x::xs) = foldl f (f(x,z)) xs

fun foldr f z [] = z
| foldr f z (x::xs) = f(x, foldr f z xs)

Homework:

foldl (op ::) [] [1,2,3,4] ==> 7
foldr (op ::) [] [1,2,3,4] ==> 7
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Map and fold over trees and other datatypes
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Can we generalize map and fold"?

So fare we have considered map and fold exclusively for lists.

-} map: transform elements in a list, given a transformation function

fold: combines elements in a list, given a binary operation and

base value

Can we generalize map and fold to, for example, binary trees”?

-} Yes! Let’'s work it out.

-

It may be helpful to visualize map and fold for lists

diagrammatically first, to capture the underlying pattern.
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(x fold: ('a x 'b —> 'b) —> 'b —> 'a list ->

'b x)

18



The “pattern” underlying fold

(x fold: ('a x 'b —> 'b) —> 'b —> 'a list ->

'b x)

18



The “pattern” underlying fold

(x fold: ('a x 'b —> 'b) —> 'b —> 'a list ->

foldfz
ﬁ

'b x)

18



The “pattern” underlying fold

(x fold: ('a x 'b —> 'b) —> 'b —> 'a list ->

foldfz
ﬁ

'b x)

18



The “pattern” underlying fold

(x fold: ('a x 'b —> 'b) —> 'b —> 'a list ->

foldfz
ﬁ

'b x)

19



The “pattern” underlying fold

(x fold: ('a * 'b —> 'b) —> 'b —> 'a list —> 'b x)

foldfz
ﬁ

-} Replace every constructor with a function or value.

19



The “pattern” underlying fold

(x fold: ('a * 'b —> 'b) —> 'b —> 'a list —> 'b x)

foldfz
ﬁ

-} Replace every constructor with a function or value.

20



The “pattern” underlying fold

(x fold: ('a * 'b —> 'b) —> 'b —> 'a list —> 'b x*)

n-ary constructors

become n-ary functions

foldfz
ﬁ

-} Replace every constructor with a function or value.
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21



Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)

22



Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty =

23



Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty

24



Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty
| tmap f (Node(1l,x,r)) =

25



Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty
| tmap f (Node(1l,x,r)) = Node( )
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datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree
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Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty
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Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty
| tmap f (Node(l,x,r)) = Node(tmap f 1, f x, tmap T r)

(x tfold : ('b x 'a x '"b —> 'b) —> 'b —> 'a tree —> 'b %)
fun tfold f z Empty = z
| tfold f z (Node (1, x, r)) =
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Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty
| tmap f (Node(l,x,r)) = Node(tmap f 1, f x, tmap T r)

(x tfold : ('b x 'a x '"b —> 'b) —> 'b —> 'a tree —> 'b %)
fun tfold f z Empty = z
| tfold f z (Node (1, x, r)) =
f( )
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Map and fold for binary trees

datatype 'a tree = Empty | Node of 'a tree x 'a x 'a tree

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)
fun tmap f Empty = Empty
| tmap f (Node(l,x,r)) = Node(tmap f 1, f x, tmap T r)

(x tfold : ('b *x 'a *x 'b —> 'b) —> 'b —> 'a tree —> 'b x)
fun tfold f z Empty = z
| tfold f z (Node (1, x, r)) =
f (tfold f z 1, x, tfold f z r)
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Examples for tmap and tfold

val stringify = tmap Int.toString

val treesum = tfold (fn (a,x,b) => a+x+b) 0
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Examples for tmap and tfold

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)

val stringify = tmap Int.toString

val treesum

tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(x stringify : * )
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Examples for tmap and tfold

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)

val stringify = tmap Int.toString

val treesum

tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(x stringify : int tree —> string tree x)
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Examples for tmap and tfold

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)

val stringify = tmap Int.toString

val treesum

tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(x stringify : int tree —> string tree x)

(x treesum : * )
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Examples for tmap and tfold

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)

val stringify = tmap Int.toString

(x tfold : ('b *x 'a * 'b —> 'b) —> 'b —> 'a tree —>
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(x stringify : int tree —> string tree x)

(x treesum : * )

'b %)
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Examples for tmap and tfold

(x tmap : ('a —> 'b) —> 'a tree —> 'b tree x)

val stringify = tmap Int.toString

(x tfold : ('b *x 'a * 'b —> 'b) —> 'b —> 'a tree —>
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(x stringify : int tree —> string tree x)

(x treesum : int tree —> int x)

'b %)
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Map and fold for leafy binary trees

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy
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Map and fold for leafy binary trees

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(x lmap: ('a —> 'b) —> 'a leafy —> 'b leafy x)
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Map and fold for leafy binary trees

{

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(x lmap: ('a —> 'b) —> 'a leafy —> 'b leafy x)
fun lmap f Leaf(x) =
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Map and fold for leafy binary trees

{

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(x lmap: ('a —> 'b) —> 'a leafy —> 'b leafy x)
fun lmap f Leaf(x) = Leaf(f x)

46



Map and fold for leafy binary trees

{

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(x lmap: ('a —> 'b) —> 'a leafy —> 'b leafy x)
fun lmap f Leaf(x) = Leaf(f x)
| lmap f (Node(1l,r)) =
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Map and fold for leafy binary trees

{

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(* lmap: ('a —> 'b) —> 'a leafy —> 'b leafy %)
fun lmap f Leaf(x) = Leaf(f x)
| Tlmap f (Node(1l,r)) = Node(lmap f 1, lmap f r)
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Map and fold for leafy binary trees

{

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(* lmap: ('a —> 'b) —> 'a leafy —> 'b leafy %)
fun lmap f Leaf(x) = Leaf(f x)
| Tlmap f (Node(1l,r)) = Node(lmap f 1, lmap f r)

(x Lfold: ('bx'b —> 'b) —> ('a—>"'b) —> 'a leafy —> 'b x)
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Map and fold for leafy binary trees

{

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(* lmap: ('a —> 'b) —> 'a leafy —> 'b leafy %)
fun lmap f Leaf(x) = Leaf(f x)
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Map and fold for leafy binary trees

{

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(* lmap: ('a —> 'b) —> 'a leafy —> 'b leafy %)
fun lmap f Leaf(x) = Leaf(f x)
| Tlmap f (Node(1l,r)) = Node(lmap f 1, lmap f r)

(x Lfold: ('bx'b —> 'b) —> ('a—>"'b) —> 'a leafy —> 'b x)

fun 1fold f g Leaf(x) = g(x)
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Map and fold for leafy binary trees

{

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(* lmap: ('a —> 'b) —> 'a leafy —> 'b leafy %)
fun lmap f Leaf(x) = Leaf(f x)
| Tlmap f (Node(1l,r)) = Node(lmap f 1, lmap f r)

(x Lfold: ('bx'b —> 'b) —> ('a—>"'b) —> 'a leafy —> 'b x)

fun 1fold f g Leaf(x) = g(x)
| 1fold f g (Node (1, r)) =
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Map and fold for leafy binary trees

{

datatype 'a leafy = Leaf of ‘a
| Node of "a leafy x 'a leafy

(* lmap: ('a —> 'b) —> 'a leafy —> 'b leafy %)
fun lmap f Leaf(x) = Leaf(f x)
| Tlmap f (Node(1l,r)) = Node(lmap f 1, lmap f r)

(x Lfold: ('bx'b —> 'b) —> ('a—>"'b) —> 'a leafy —> 'b x)

fun 1fold f g Leaf(x) = g(x)
| 1fold f g (Node (1, r)) =
f (1fold f g 1, 1fold f g r)
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Examples for Imap and Ifold

(x lmap: ('a —> 'b) —> 'a leafy —> 'b leafy x)
val lstringify = lmap Int.toString

(x 1fold: ('bx'b —> 'b) —> ('a->"'b) —> 'a leafy —> 'b x)
val leafysum = 1fold (op +) (fn x => x)
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Examples for Imap and Ifold

(x lmap: ('a —> 'b) —> 'a leafy —> 'b leafy x)
val lstringify = lmap Int.toString

(x 1fold: ('bx'b —> 'b) —> ('a->"'b) —> 'a leafy —> 'b x)
val leafysum = 1fold (op +) (fn x => x)

What are the types of Ltringify and leafysum?
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Examples for Imap and Ifold

(x lmap: ('a —> 'b) —> 'a leafy —> 'b leafy x)
val lstringify = lmap Int.toString

(x Lfold: ('bx'b —> 'b) —> ('a—>"'b) —> 'a leafy —> 'b x)
val leafysum = 1fold (op +) (fn x => x)
What are the types of Ltringify and leafysum?

(x 1stringify : int leafy —> string leafy )

(x leafysum : int leafy —> int x)
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datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option )
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(x opmap: ('a —> 'b) —> 'a option —> 'b option )
fun opmap T NONE =
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Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option )
fun opmap f NONE = NONE
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Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option )
fun opmap f NONE = NONE
| opmap f (SOME x) =
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Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option )
fun opmap f NONE = NONE
| opmap f (SOME x) = SOME (f x)
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Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option )
fun opmap f NONE = NONE
| opmap f (SOME x) = SOME (f x)

(x opfold: ('a—> 'b) —> 'b —> 'a option —> 'b x*)
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Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option )
fun opmap f NONE = NONE
| opmap f (SOME x) = SOME (f x)

(x opfold: ('a—> 'b) —> 'b —> 'a option —> 'b x*)
fun opfold f z NONE
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Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option )
fun opmap f NONE = NONE
| opmap f (SOME x) = SOME (f x)

(x opfold: ('a—> 'b) —> 'b —> 'a option —> 'b x*)
fun opfold f z NONE = z
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Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option )
fun opmap f NONE = NONE
| opmap f (SOME x) = SOME (f x)

(x opfold: ('a—> 'b) —> 'b —> 'a option —> 'b x*)
fun opfold f z NONE = z
| opfold f z (SOME x) =
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Map and fold for non-recursive datatypes

datatype 'a option = NONE | SOME of 'a

(x opmap: ('a —> 'b) —> 'a option —> 'b option )
fun opmap f NONE = NONE
| opmap f (SOME x) = SOME (f x)

(x opfold: ('a—> 'b) —> 'b —> 'a option —> 'b x*)
fun opfold f z NONE = z
| opfold f z (SOME x) = f Xx

67



Examples for opmap and opfold




Examples for opmap and opfold

(x opmap: ('a —> 'b) —> 'a option —> 'b option )

val ostringify = opmap Int.toString

(x opfold: ('a—> 'b) —> 'b —> 'a option —> 'b x*)
val osum = opfold (fn x => x) O
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Examples for opmap and opfold

(x opmap: ('a —> 'b) —> 'a option —> 'b option )

val ostringify = opmap Int.toString

(x opfold: ('a—> 'b) —> 'b —> 'a option —> 'b x*)
val osum = opfold (fn x => x) O

What are the types of otringify and osum?

69



Examples for opmap and opfold

(x opmap: ('a —> 'b) —> 'a option —> 'b option )

val ostringify = opmap Int.toString

(x opfold: ('a—> 'b) —> 'b —> 'a option —> 'b x*)
val osum = opfold (fn x => x) 0

What are the types of otringify and osum?

(x ostringify : int option —> string option x)

(x osum : int option —> int x)
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Another use of HOF: Staging

Staging is a coding technigue
that has a function perform useful work
prior to receiving all its arguments.
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Another use of HOF: Staging

Staging is a coding technigue
that has a function perform useful work
prior to receiving all its arguments.

-} Concern: efficiency (“cost”) of evaluation

-} Employs partial application

-} to factor out expensive part

-} to specialize inexpensive part for specific argument.

-} Improves efficiency when specialized function used many times.
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Consider the following function:

fun f (x:int, y:int) : int =
let

val z : int = horriblecomputation(x)
in

Z +y
end

Suppose the horrible computation takes 10 months.
(And suppose that addition takes a picosecond.)

Then each of these expressions takes at least 10 months to evaluate:

: gg: :23; without mutation

—} If only we could recall horriblecomputation(5)!
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in
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end
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fun f (x:int, y:int) : int =
let

val z : int = horriblecomputation(x)
in

Z +y
end

What is the type of £7?

(x f : int % int —> int x)

-} Maybe currying can help?
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Staging

Consider the following function:

fun f (x:int, y:int) : int =
let

val z : int = horriblecomputation(x)
in

Z +y
end

What is the type of £7?

(x f : int % int —> int x)

-} Maybe currying can help?

-} Let’s define a curried version of f!
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Curried version of f;

fun g (x:int) (y:int)
let
val z : 1int =
in
Z + Yy
end

» 1nt

horriblecomputation(x)
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Curried version of f;

fun g (x:int) (y:int) : int
let
val z : int = horriblecomputation(x)
in
Z + Yy
end
Now thetype of gis (x g : int —> int —> int x*),
SO we can define val g5 : int —> int = g(5)
and then evaluate g5 (2) (% instead of f (5,2) *)

g5 (3) (x instead of f (5,3) )

-} How long do the 3 lines above take?
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-} How long do the 3 lines above take?
Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5), one evaluates

[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y == let val z = hc(x) in z+y end) (5)

==> [5/x]‘fn y => let val z = hc(x) in z+y end‘

This i1s a lambda, and No application, and thus no

thus s a value! evaluation of body!
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-} How long do the 3 lines above take?
Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5), one evaluates
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In declaring val g5 = g(5), one evaluates
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==> (fn x => fn y == let val z = hc(x) in z+y end) (5)

==>‘[5/x] fn y => let val z = hc(x) in z+y end‘
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-} How long do the 3 lines above take?
Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5), one evaluates

[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y == let val z = hc(x) in z+y end) (5)

==>‘[5/x] fn y => let val z = hc(x) in z+y end‘

This is the closure The horrible

returned by g(5).

computation has not yet
happened :-(
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Staging

We now have the following binding:

r N

env

[5/x] 5
fn y == let val z = hc(x) in z+y end g

\. ,

Evaluating  g5(2)
==> [5/x, 2/y] let val z = hc(x) in z+y end

Wl«__> [5/x, 2/y, n/z] z+y (for some integer n)
==> N

Similarly, g5(3) will take 10 months.

-} Defining g in place of f has not yet helped!
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Recall the lamlibda expression for Q:

fn x = fny => let‘val Z = hc(x)‘in z+y end

Horrible
computation hidden

| et’s move this underneath inner lambda.
computation here.

-} Move is valid because the computation does not depend on .

-

Such rearrangement of code — putting it in the “right spot” —

we refer to as staging.
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-} Factoring hc (x) out of the inner lambda has improved efficiency!
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That's all for today. Have a good weekend!



