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Combining elements in a list, given a binary operation and base value:

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Two implementations:
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Combining elements in a list, given a binary operation and base value:

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Two implementations:

foldl f z [x1,…,xn] ≅ f(xn,…f(x3,f(x2,f(x1,z))))

foldr f z [x1,…,xn] ≅ f(x1,…f(xn-2,f(xn-1,f(xn,z))))

Examples:
foldl (op -) 0 [1,2,3,4] ==> 2
foldr (op -) 0 [1,2,3,4] ==> ~2 (1-(2-(3-(4-0))))
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(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)
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fun foldl f z [] = z 
  | foldl f z (x::xs) = foldl f (f(x,z)) xs

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)
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Higher-order function: fold
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Let’s implement foldl and foldr:

fun foldl f z [] = z 
  | foldl f z (x::xs) = foldl f (f(x,z)) xs

fun foldr f z [] = z 
  | foldr f z (x::xs) = f(x, foldr f z xs)

Homework:
foldl (op ::) [] [1,2,3,4] ==> ?
foldr (op ::) [] [1,2,3,4] ==> ?

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)
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So fare we have considered map and fold exclusively for lists.

map: transform elements in a list, given a transformation function

fold: combines elements in a list, given a binary operation and 
base value

Can we generalize map and fold to, for example, binary trees?

Yes!  Let’s work it out.

It may be helpful to visualize map and fold for lists 
diagrammatically first, to capture the underlying pattern.
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map f

(* map: ('a -> 'b) -> 'a list -> 'b list *)
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v1 ::
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f(v3) [ ][ ]

Replace every element value vi with its transformed value f(vi).
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::

v1 ::

v2 ::

v3 [ ][ ]
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fold f z

::
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fold f z

::

v1 ::

v2 ::

v3 [ ][ ]

f

v1 f

v2 f

v3 [ ]z

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)
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fold f z

::

v1 ::

v2 ::

v3 [ ][ ]

f

v1 f

v2 f

v3 [ ]z

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Replace every constructor with a function or value.

n-ary constructors 
become n-ary functions
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datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree 

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *) 
fun tmap f Empty = Empty 
  | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r) 

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *) 
fun tfold f z Empty = z 
  | tfold f z (Node (l, x, r)) = 
    f (tfold f z l, x, tfold f z r)
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datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree 

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *) 
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(* stringify : int tree -> string tree *) 

(* treesum : int tree -> int *)
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val stringify = tmap Int.toString 
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datatype 'a leafy = Leaf of ‘a 
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fun lmap f Leaf(x) = Leaf(f x) 
  | lmap f (Node(l,r)) = Node(lmap f l, lmap f r) 

(* lfold: ('b * 'b -> ‘b) -> ('a -> 'b) -> 'a leafy -> 'b *) 
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  | lfold f g (Node (l, r)) = 
    f (lfold f g l, lfold f g r)
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(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *) 

val lstringify = lmap Int.toString 

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *) 
val leafysum = lfold (op +) (fn x => x)
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(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *) 

val lstringify = lmap Int.toString 

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *) 
val leafysum = lfold (op +) (fn x => x)

What are the types of ltringify and leafysum?



Examples for lmap and lfold

56

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *) 

val lstringify = lmap Int.toString 

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *) 
val leafysum = lfold (op +) (fn x => x)

What are the types of ltringify and leafysum?

(* lstringify : int leafy -> string leafy *) 

(* leafysum : int leafy -> int *)
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datatype 'a option = NONE | SOME of 'a 

(* opmap: ('a -> 'b) -> 'a option -> 'b option *) 
fun opmap f NONE = NONE 
  | opmap f (SOME x) = SOME (f x) 

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *) 
fun opfold f z NONE = z 
  | opfold f z (SOME x) = f x
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datatype 'a option = NONE | SOME of 'a 

(* opmap: ('a -> 'b) -> 'a option -> 'b option *) 
fun opmap f NONE = NONE 
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(* opmap: ('a -> 'b) -> 'a option -> 'b option *) 

val ostringify = opmap Int.toString 

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *) 
val osum = opfold (fn x => x) 0
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(* opmap: ('a -> 'b) -> 'a option -> 'b option *) 

val ostringify = opmap Int.toString 

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *) 
val osum = opfold (fn x => x) 0

What are the types of otringify and osum?
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(* opmap: ('a -> 'b) -> 'a option -> 'b option *) 

val ostringify = opmap Int.toString 

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *) 
val osum = opfold (fn x => x) 0

What are the types of otringify and osum?

(* ostringify : int option -> string option *) 

(* osum : int option -> int *)
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Another use of HOF: Staging

72

Staging is a coding technique 
that has a function perform useful work 
prior to receiving all its arguments.

Concern: efficiency (“cost”) of evaluation

Employs partial application

to factor out expensive part

to specialize inexpensive part for specific argument.

Improves efficiency when specialized function used many times.
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fun f (x:int, y:int) : int = 
    let  
       val z : int = horriblecomputation(x) 
    in 
       z + y 
    end

Consider the following function:

Suppose the horrible computation takes 10 months. 
(And suppose that addition takes a picosecond.)

Then each of these expressions takes at least 10 months to evaluate:
f (5,2) 
f (5,3)

If only we could recall horriblecomputation(5)!

without mutation
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fun f (x:int, y:int) : int = 
    let  
       val z : int = horriblecomputation(x) 
    in 
       z + y 
    end

Consider the following function:

What is the type of f?
(* f : int * int -> int *)

Maybe currying can help?

Let’s define a curried version of f!
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How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

This is a lambda, and 
thus s a value!
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In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

This is a lambda, and 
thus s a value!

No application, and thus no 
evaluation of body!
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Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

This is the closure 
returned by g(5).

The horrible 
computation has not yet 

happened :-(
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fn y => let val z = hc(x) in z+y end

env[ g5 ][5/x] /
Evaluating g5(2)

==> [5/x, 2/y] let val z = hc(x) in z+y end
==> [5/x, 2/y, n/z] z+y
==> n

(for some integer n)

Similarly, g5(3) will take 10 months.

Defining g in place of f has not yet helped!

10 months!
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Recall the lambda expression for g:

fn x => fn y => let val z = hc(x) in z+y end

Let’s move this 
computation here.

Move is valid because the computation does not depend on y.

Such rearrangement of code — putting it in the “right spot” — 
we refer to as staging.

Horrible 
computation hidden 

underneath inner lambda.
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Let’s stage properly:
fun h (x:int) : int -> int = 
    let  
       val z : int = horriblecomputation(x) 
    in 
       (fn y : int => z + y) 
    end

Now the type of h is (* h : int -> int -> int *)
so we can define val h5 : int -> int = h(5)

,

and then evaluate h5 (2)

h5 (3)

How long do the 3 lines above take?

Inner lambda free 
of hc(x)!
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Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
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==> [5/x, n/z] fn y => z+y (for some integer n)

10 months! This is the closure 
returned by h(5).
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We now have the following binding:

fn y => z+y

env[ h5 ][5/x, n/z] /
Evaluating h5(2)

==> [5/x, n/z, 2/y] z+y
==> n’ (for some integer n’)

Similarly, h5(3) will be very quick.

Factoring hc(x) out of the inner lambda has improved efficiency!

quick!
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Summary:

f (5,2)

f (5,3)
> 10 months

> 10 months

val g5 = g(5)

g5 (2)
fast

> 10 months
g5 (3) > 10 months

val h5 = h(5)

h5 (2)
> 10 months

fast
h5 (3) fast



That's all for today.  Have a good weekend!
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