15-150
 Principles of Functional Programming Lecture 8

February 8, 2024
Michael Erdmannn

Parallel Sorting

Recall:
datatype tree $=$
Empty
Node of tree *int * tree
Int.compare : int* int \rightarrow order
datatype order $=$
LESS
| EqUAL
| GREATER

We define trees to be sorted by:

- Empty is sorted;
- $\operatorname{Node}(l, x, r)$ is sorted iff
(i) \& is sorted and for every y :int in ℓ, Int. compare (y, x) returns either LESS or EQUAL,
and (ii) r is sorted and for every z :int in r, Int. compare (z, x) returns either GREATER or EQUAL.

Let's try divide conquer for sorting trees:

- Split the tree into subtrees
- Sort the subtrees
- Merge the results
(* Mort: tree \rightarrow tree
REQUIRES: true
ENSURES: Mort (t) returns a sorted tree containing exactly the elements of t (including duplicates).
*)
fun Mort Empty $=$ Empty
$\mid \operatorname{Msort}(\operatorname{Node}(\ell, x, r))=$ Ins (x, Merge (Mort ℓ, Mort r)
(* Ins : int * tree \rightarrow tree
REQUIRES: t is sorted.
ENSURES: Ins (x, t) returns a sorted tree containing x along with the elements of t (including duplicates).
*)
fun $\operatorname{Ins}(x$, Empty $)=\operatorname{Node}$ (Empty, x, Empty)
$\operatorname{Ins}(x, \operatorname{Node}(l, y, r))=$
(case Int. compare (x, y) of

$$
\text { GREATER } \Rightarrow \operatorname{Node}(\ell, y, \operatorname{Ins}(x, r))
$$

$$
1-\quad \Rightarrow \operatorname{Node}(\operatorname{Ins}(x, l), y, r))
$$

Issue:
When merging two trees, the root elements may be different:

where ?

To obtain parallelism, it is useful to split t_{2} at the location x would appear in t_{2} (continuing to assume sorted trees), rather than at y.

Issue:
When merging two trees, the root elements may be different:

To obtain parallelism, it is useful to split t_{2} at the location X would appear in t_{2} (continuing to assume sorted trees), rather than at y.

Trees to merge after the split

Merge the two trees enclosed by the orange curve.

Merge the two trees enclosed by the green curve.
And then create a node with x and the two merged pairs of trees.
(* Merge : tree * tree \rightarrow tree
REQUIRES: $t_{1} t_{2}$ are sorted.
ENSURES: Merge $\left(t_{1}, t_{2}\right)$ returns a sorted tree containing exactly the elements
*) of $t_{1} \otimes t_{2}$ together (incl. dup.).
fun Merge $\left(E \operatorname{mpt} \mathrm{f}_{1}, t_{2}\right)=t_{2}$
Merge $\left(\operatorname{Node}\left(l_{1}, x, r_{1}\right), t_{2}\right)=$
let val $\left(\ell_{2}, r_{2}\right)=\operatorname{SplitAt}\left(x, t_{2}\right)$ in
end

$$
\text { Node (Merge } \left.\left(l_{1}, l_{2}\right), x, \text { Merge }\left(r_{1}, r_{2}\right)\right)
$$

Caution:
The depth of Merge $\left(t_{1}, t_{2}\right)$ can be the sum of the depths of $t_{1} \otimes t_{2}$.
Example:

This means Merge $\left(t_{1}, t_{2}\right)$ may not be balanced even if $t_{1} \& t_{2}$ are balanced.

Consequently:
In order to obtain fast code, one must rebalance.

One can do so without affecting asymptotic cost compared to what we will do today when we assume trees are balanced.
The details are beyond today's lecture.
fun Mort Empty $=$ Empty
$\mid \operatorname{Msort}(\operatorname{Node}(l, x, r))=$
Ins (x, Merge (Msort ℓ, Mort r)
fun Merge $\left(E \operatorname{mpty}, t_{2}\right)=t_{2}$
\mid Merge $\left(\operatorname{Node}\left(l_{1}, x, r_{1}\right), t_{2}\right)=$
let
val $\left(l_{2}, r_{2}\right)=\operatorname{SplitAt}\left(x, t_{2}\right)$
in
end Node (Merge $\left.\left(l_{1}, l_{2}\right), x, \operatorname{Merge}\left(r_{1}, r_{2}\right)\right)$
fun Mort Empty $=$ Empty $\mid \operatorname{Msort}(\operatorname{Node}(l, x, r))=$ reba)ance (Ins (x, Merge (Mort ℓ, Mort $r)$))
fun Merge $\left(E \operatorname{mpty}, t_{2}\right)=t_{2}$
$\mid \operatorname{Merge}\left(\operatorname{Node}\left(l_{1}, x, r_{1}\right), t_{2}\right)=$
let
val $\left(l_{2}, r_{2}\right)=\operatorname{SplitAt}\left(x, t_{2}\right)$
in
end Node (Merge $\left.\left(l_{1}, l_{2}\right), x, \operatorname{Merge}\left(r_{1}, r_{2}\right)\right)$
(* Split At : int * tree \rightarrow tree * tree
REQUIRES: t is sorted.
ENSURES: SplitAt (x, t) returns a pair $\left(t_{1}, t_{2}\right)$ of sorted trees
such that:

- $t_{1} \& t_{2}$ together contain exactly the elements of t (incl. dips.).
- The elements of t_{1} are LESS or Equal to x.
- The elements of t_{2} are GREATER or EQUAL to x.
fun $S_{\text {plitAt }}(x$, Empty) $=$ (Empty, Empty) $\mid \operatorname{SplitAt}(x, \operatorname{Node}(l, y, r))=$
(case Int.compare (x, y) of

$$
\begin{aligned}
\text { LESS } \Rightarrow & \frac{\text { let }}{\operatorname{val}\left(t_{1}, t_{2}\right)=S_{p l i t A t}(x, l)} \\
& \operatorname{in}\left(t_{1}, \operatorname{Node}\left(t_{2}, y, r\right)\right)
\end{aligned}
$$

end

$$
1-\Rightarrow \underline{v a l}_{\text {let }}\left(t_{1}, t_{2}\right)=\operatorname{splitAt}(x, r)
$$

in ($\left.\operatorname{Node}\left(l, y, t_{1}\right), t_{2}\right)$
end)

Analysis

- Assume balanced trees
- Focus on span
- Write just the recursive part of the recurrence
(we will phrase this in terms of the depths of the input trees)
fun $\operatorname{Ins}\left(x\right.$, Empty) $=\operatorname{Node}\left(E_{\text {mpty }}, x\right.$, Empty $)$

$$
\mid \operatorname{Ins}(x, \operatorname{Node}(l, y, r))=
$$

(case Int.compare (x, y) of

$$
\begin{aligned}
\text { GREATER } & \Rightarrow \operatorname{Node}(l, y, \operatorname{Ins}(x, r)) \\
& \Rightarrow \operatorname{Node}(\operatorname{Ins}(x, l), y, r))
\end{aligned}
$$

$$
\begin{aligned}
& \text { fun } \operatorname{Ins}\left(x, E_{\text {empty }}\right)=\operatorname{Node}\left(E_{\text {empty }}, x, \text { Empty }\right) \\
& \mid \operatorname{Ins}(x, \operatorname{Node}(l, y, r))= \\
& \text { (case Int.compare }(x, y) \text { of } \\
& \text { GREATER } \Rightarrow \operatorname{Node}(l, y, \operatorname{Ins}(x,-r)) \\
& 1-\quad \Rightarrow \operatorname{Node}(\operatorname{Ins}(x, l), y, r)) \\
& S_{I_{n s}}(d) \leq c_{1}+S_{I_{n s}}(d-1)
\end{aligned}
$$

fun $\operatorname{Ins}\left(x, E_{\text {mpty }}\right)=\operatorname{Node}\left(E_{\text {mpty }}, x\right.$, Empty $)$ $\mid \operatorname{Ins}(x, \operatorname{Node}(l, y, r))=$ (case Int.compare (x, y) of GREATER \Rightarrow Node $(l, y, \operatorname{Ins}(x, r))$

$$
S_{I_{n s}}(d) \leq c_{1}+S_{I_{n s}}(d-1),
$$

so $S_{\text {Ins }}(d)$ is $O(d)$.
$f_{\text {fun }} S_{\text {plitAt }}(x$, Empty $)=$ (Empty, Empty)
$\mid \operatorname{SplitAt}(x, \operatorname{Node}(l, y, r))=$
(case Int.compare (x, y) of

$$
\begin{aligned}
\text { LESS } \Rightarrow & \frac{\text { let }}{\text { val }}\left(t_{1}, t_{2}\right)=S_{p l i t A t}(x, l) \\
& \left.\frac{\text { in }}{(t}, \operatorname{Node}\left(t_{2}, y, r\right)\right) \\
& \quad \text { end }
\end{aligned}
$$

$f_{\text {fun }} S_{\text {plitAt }}(x$, Empty) $=$ (Empty, Empty)
$\mid \operatorname{SplitAt}(x, \operatorname{Node}(l, y, r))=$
(case Int.compare (x, y) of

$$
\begin{aligned}
\text { LESS } \Rightarrow & \frac{\text { let }}{\text { val }}\left(t_{1}, t_{2}\right)=s_{p l i t A t}(x, l) \\
& \quad \text { in }\left(t_{1}, \operatorname{Node}\left(t_{2}, y, r\right)\right) \\
& \quad \text { end }
\end{aligned}
$$

$$
S_{S_{p l i t A t}}(d) \leqslant c_{2}+S_{S_{p p l i t A t}}(d-1)
$$

fun $\operatorname{SplitAt}(x$, Empty) $=$ (Empty, Empty)
$\mid \operatorname{SplitAt}(x, \operatorname{Node}(l, y, r))=$
(case Int.compare (x, y) of

$$
\begin{aligned}
\text { LESS } \Rightarrow & \frac{\text { let }}{\operatorname{val}}\left(t_{1}, t_{2}\right)=\operatorname{splitAt}(x, l) \\
& \quad \text { in }\left(t_{1}, \operatorname{Node}\left(t_{2}, y, r\right)\right) \\
1 \Rightarrow & \text { end }
\end{aligned}
$$

$$
S_{S_{p l i t A t}}(d) \leq c_{2}+S_{S_{p l i t A t}}(d-1)
$$

so $S_{\text {split at }}(d)$ is $O(d)$.

$$
\begin{aligned}
\text { fun } & \text { Merge }\left(\text { Empty }, t_{2}\right)=t_{2} \\
\mid & \text { Merge }\left(\operatorname{Node}\left(l_{1}, x, r_{1}\right), t_{2}\right)= \\
& \text { let } \mathrm{val}\left(l_{2}, r_{2}\right)=S_{p} \text { lit At }\left(x, t_{2}\right) \\
& \text { in Node }\left(\text { Merge }\left(l_{1}, l_{2}\right), x, \text { Merge }\left(r_{1}, r_{2}\right)\right) \\
& \text { end }
\end{aligned}
$$

$$
\begin{aligned}
& \text { fun } \text { Merge }\left(\text { Empty }, t_{2}\right)=t_{2} \\
& \mid \text { Merge }\left(\operatorname{Node}\left(l_{1}, x, r_{1}\right), t_{2}\right)= \\
& \text { let val }\left(l_{2}, r_{2}\right)=\operatorname{Split} \text { At }\left(x, t_{2}\right) \\
& \text { in } \operatorname{Node}\left(\text { Merge }\left(l_{1}, l_{2}\right), x, \text { Merge }\left(r_{1}, r_{2}\right)\right) \\
& \text { end }
\end{aligned}
$$

$$
\begin{aligned}
& S_{\text {Merge }}\left(d_{1}, d_{2}\right) \\
& \leq C_{3}+S_{S_{\text {plitat }}\left(d_{2}\right)+\max \left(S_{\text {Merge }}\left(d_{1}-1, ?\right),\right.} \begin{array}{l}
\left.S_{\text {Merge }}\left(d_{1}^{\prime}, ?\right)\right)
\end{array} \quad\left(\text { with } d_{1}^{\prime} \leq d_{1}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { fun Merge }\left(\text { Empty, } t_{2}\right)=t_{2} \\
& \mid \operatorname{Merge}\left(\operatorname{Node}\left(l_{1}, x, r_{1}\right), t_{2}\right)= \\
& \text { let val }\left(l_{2}, r_{2}\right)=\operatorname{SplitAt}\left(x, t_{2}\right) \\
& \text { in } \\
& \text { end } \\
& \operatorname{Node}\left(\operatorname{Merge}\left(l_{1}, l_{2}\right), x, M \operatorname{lige}\left(r_{1}, r_{2}\right)\right) \\
& S_{\text {Merge }}\left(d_{1}, d_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (with } \left.d_{1}^{\prime} \leqslant d_{1}-1\right) \quad S_{\text {Merge }}\left(d_{1}^{\prime}, ?\right) \text {) } \\
& \leq c_{3}+S_{\text {SplAt }}\left(d_{2}\right)+S_{\text {Merge }}\left(d_{1}-1, d_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& S_{\text {Merge }}\left(d_{1}, d_{2}\right) \\
& \leq c_{3}+S_{\text {splitAt }\left(d_{2}\right)+\max \left(S_{\text {Merge }}\left(d_{1}-1, ?\right),\right.} \\
&\left.\quad S_{\text {Meth } \left.d_{1}^{\prime} \leq d_{1}-1\right)}\left(d_{1}^{\prime}, ?\right)\right) \\
& \leq c_{3}+S_{S_{\text {splat }}}\left(d_{2}\right)+S_{\text {Merge }}\left(d_{1}-1, d_{2}\right) \\
& \leq c_{3}+c_{4} \cdot d_{2}+S_{\text {Merge }}\left(d_{1}-1, d_{2}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& S_{\text {Merge }}\left(d_{1}, d_{2}\right) \\
\leq & c_{3}+S_{S_{\text {splitAt }}}\left(d_{2}\right)+\max \left(S_{\text {Merge }}\left(d_{1}-1, ?\right),\right. \\
& \left.\quad S_{\text {With }} d_{1}^{\prime} \leq d_{1}-1\right) \\
\leq & \left.c_{3}+S_{S_{\text {plitat }}}\left(d_{1}^{\prime}, ?\right)\right) \\
\leq & c_{3}+S_{\text {Merge }}\left(d_{1}-1, d_{2}\right)
\end{aligned}
$$

So $S_{\text {Merge }}\left(d_{1}, d_{2}\right)$ is $O\left(d_{1} \cdot d_{2}\right)$.
fun Mort Empty $=$ Empty
$\operatorname{Msort}(\operatorname{Node}(l, x, r))=$ Ins (x, Merge (Mort l, Mort r))

$$
\begin{aligned}
& \text { fun Msort Empty }=\text { Empty } \\
& \mid \operatorname{Msort}(\operatorname{Node}(l, x, r))= \\
& \text { Ins (} x \text {, Merge (Msort } l \text {, Msort t }) \text {) } \\
& S_{\text {Msort }} \text { (d) } \\
& \leq c_{5}+\max \left(S_{\text {Msort }}(d-1), S_{\text {Msort }}\left(d^{\prime}\right)\right) \\
& +S_{\text {Merge }}\left(d_{1}, d_{2}\right)+S_{\text {Ins }}\left(d_{3}\right) \text {. }
\end{aligned}
$$

fun Mort Empty $=$ Empty
$\mid \operatorname{Msort}(\operatorname{Node}(l, x, r))=$ Ins (x, Merge (Mort ℓ, Mort i))
$S_{\text {Mort }}$ (d)

$$
\begin{aligned}
\leqslant c_{5} & +\max \left(S_{\text {Msort }}(d-1), S_{\text {Msort }}\left(d^{\prime}\right)\right) \\
& +S_{\text {Merge }}\left(d_{1}, d_{2}\right)+S_{I_{\text {ns }}}\left(d_{3}\right)
\end{aligned}
$$

Here: $\quad d^{\prime} \leqslant d-1$.

- $d_{1} d d_{2}$ are the depths of the trees returned by the recursive calls to Mort.
- d_{3} is the depth of the tree returned by Merge.
$S_{\text {Mort }}(d)$

$$
\begin{aligned}
\leq c_{5} & +\max \left(S_{\text {Msort }}(d-1), S_{\text {Msort }}\left(d^{\prime}\right)\right) \\
& +S_{\text {Merge }}\left(d_{1}, d_{2}\right)+S_{\text {Ins }}\left(d_{3}\right) .
\end{aligned}
$$

Here: - $d^{\prime} \leqslant d-1$.

- $d_{1} a d_{2}$ are the depths of the trees returned by the recursive calls to Msort.
- d_{3} is the depth of the tree returned by Merge.

If we rebalance as a final step in Mort, then $d_{1} \leq d, d_{2} \leq d, \ddagger d_{3} \leq 2 \cdot d$.

Thus: $\quad S_{\text {Msort }}(d)$

$$
\begin{aligned}
& \leq c_{5}+S_{\text {Msert }}(d-1)+S_{\text {Merge }}(d, d)+S_{I_{n s}}(2 d) \\
& \leq c_{5}+S_{\text {Msort }}(d-1)+c_{6} \cdot d^{2}+c_{7} \cdot d \\
& \leq c_{8} \cdot d^{2}+S_{\text {Msort }}(d-1) .
\end{aligned}
$$

Thus: $\quad S_{\text {Msort }}(d)$

$$
\begin{aligned}
& \leq c_{5}+S_{\text {Msert }}(d-1)+S_{\text {Merge }}(d, d)+S_{I_{n s}}(2 d) \\
& \leq c_{5}+S_{\text {Msort }}(d-1)+c_{6} \cdot d^{2}+c_{7} \cdot d \\
& \leq c_{8} \cdot d^{2}+S_{\text {Msort }}(d-1) .
\end{aligned}
$$

So $S_{\text {Msort }}(d)$ is $O\left(d^{3}\right)$.

Sorting

list isort list merge sort tree merge sort Work | $O\left(n^{2}\right)$ | $O(n \cdot \log n)$ | $O(n \cdot \log n)$ |
| :---: | :---: | :---: |
| $O\left(n^{2}\right)$ | $O(n)$ | $\begin{array}{c}O\left((\log n)^{3}\right) \\ O\left((\log n)^{2}\right)\end{array}$ |
| (previous lecture) | $\begin{array}{c}\text { (today) } \\ \text { (in 15-210) }\end{array}$ | |

(* rebalance : tree \rightarrow tree
REQUIRES: true
ENSURES: rebalance (t) returns a tree t t^{\prime} containing exactly the elements of t, and in the same order, such that:

$$
\operatorname{depth}\left(t^{\prime}\right)=\left\lceil\log _{2}\left(\operatorname{size}\left(t^{\prime}\right)\right)\right\rceil
$$

*)
fun rebalance (Empty) $=$ Empty
\mid rebalance $(t)=$
let
val $(l, x, r)=$ halves (t)
in Node (rebalance l, x, rebalance r) end

Comments

- halves is nontrivial.
- If the input tree t to rebalance is roughly balanced, then

Wrebalance (n) is $O(n)$
\& Srebalance (d) is $O\left(d^{2}\right)$.
Here $n=\operatorname{size}(t) \& d=\operatorname{depth}(t)$. "Roughly balanced" means $d \leq c \cdot \log _{2} n$, for some fixed constant $c \quad(c=2$, for instance). (Analysis takes some effort.)

That is all.

Have a good weekend.

See you Tuesday, when we will talk about polymorphism.

