
Sorting lists — work and span revisited

15-150
Lecture 8: September 18, 2025

Stephanie Balzer
Carnegie Mellon University

1

Announcement: midterm I

2

Announcement: midterm I

When and where:
• Thursday, September 25, 11:00am—12:20pm.
• PH 100 (Section A-I), MM Breed Hall (Section J-L).

2

Announcement: midterm I

When and where:
• Thursday, September 25, 11:00am—12:20pm.
• PH 100 (Section A-I), MM Breed Hall (Section J-L).

2

Be on time; next
lecture starts at 12:30pm!

Announcement: midterm I

When and where:
• Thursday, September 25, 11:00am—12:20pm.
• PH 100 (Section A-I), MM Breed Hall (Section J-L).

Scope:
• Lectures: 1—8.
• Labs: 1—4 and midterm review section of Lab 5.
• Assignments: Basics, Induction, and Datatypes.

2

Be on time; next
lecture starts at 12:30pm!

Announcement: midterm I

When and where:
• Thursday, September 25, 11:00am—12:20pm.
• PH 100 (Section A-I), MM Breed Hall (Section J-L).

Scope:
• Lectures: 1—8.
• Labs: 1—4 and midterm review section of Lab 5.
• Assignments: Basics, Induction, and Datatypes.

What you may have on your desk:
• Writing utensils, something to drink/eat, tissues.
• 8.5’’ x 11’’ cheatsheet (back and front), handwritten or typeset.
• No cell phones, laptops, or any other smart devices.

2

Be on time; next
lecture starts at 12:30pm!

Let's get started with sorting: insertion sort

3

Sorting

4

Sorting

4

Useful datatype:
datatype order = LESS | EQUAL | GREATER

Sorting

4

Useful datatype:
datatype order = LESS | EQUAL | GREATER

Eg:
Int.compare : int * int -> order
String.compare : string * string -> order

Sorting

5

Useful datatype:
datatype order = LESS | EQUAL | GREATER

Sorting

5

Useful datatype:
datatype order = LESS | EQUAL | GREATER

What does it mean to be sorted?

Sorting

5

Useful datatype:
datatype order = LESS | EQUAL | GREATER

What does it mean to be sorted?

Eg, for lists of integers:
A list of integers is sorted iff each integer in the list is no greater than
all integers that occur to its right.

Sorting

5

Useful datatype:
datatype order = LESS | EQUAL | GREATER

What does it mean to be sorted?

Eg, for lists of integers:
A list of integers is sorted iff each integer in the list is no greater than
all integers that occur to its right.

[..., x,..., y,...]

Sorting

5

Useful datatype:
datatype order = LESS | EQUAL | GREATER

What does it mean to be sorted?

Eg, for lists of integers:
A list of integers is sorted iff each integer in the list is no greater than
all integers that occur to its right.

[..., x,..., y,...]

LESS | EQUAL

Warm-up: insertion sort for int lists

6

Warm-up: insertion sort for int lists

6

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Warm-up: insertion sort for int lists

7

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Warm-up: insertion sort for int lists

8

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Warm-up: insertion sort for int lists

9

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Warm-up: insertion sort for int lists

10

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:

Warm-up: insertion sort for int lists

11

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:

Warm-up: insertion sort for int lists

12

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:

Warm-up: insertion sort for int lists

13

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:

Warm-up: insertion sort for int lists

14

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:

Warm-up: insertion sort for int lists

15

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:

Warm-up: insertion sort for int lists

16

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:

Warm-up: insertion sort for int lists

17

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Warm-up: insertion sort for int lists

18

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

(* isort : int list -> int list
 REQUIRES: true
 ENSURES: isort(L) evaluates to a sorted permutation of L
*)

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Warm-up: insertion sort for int lists

19

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

(* isort : int list -> int list
 REQUIRES: true
 ENSURES: isort(L) evaluates to a sorted permutation of L
*)

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Warm-up: insertion sort for int lists

20

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

(* isort : int list -> int list
 REQUIRES: true
 ENSURES: isort(L) evaluates to a sorted permutation of L
*)

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Warm-up: insertion sort for int lists

21

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

(* isort : int list -> int list
 REQUIRES: true
 ENSURES: isort(L) evaluates to a sorted permutation of L
*)

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Warm-up: insertion sort for int lists

22

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

(* isort : int list -> int list
 REQUIRES: true
 ENSURES: isort(L) evaluates to a sorted permutation of L
*)

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work for insertion sort

23

Work for insertion sort

23

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work for insertion sort

23

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.

Work for insertion sort

23

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:

Work for insertion sort

23

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause

Work for insertion sort

23

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause

Work for insertion sort

23

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause

Work for insertion sort

23

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause

Work for insertion sort

23

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause

Work for insertion sort

23

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause

Work for insertion sort

23

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause
Consequently:

Work for insertion sort

23

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause
Consequently: Wins(n) is O(n).

Work for insertion sort

23

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause
Consequently: Wins(n) is O(n).

Note: no opportunity for parallelism.

Work for insertion sort

24

Work for insertion sort

24

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work for insertion sort

24

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.

Work for insertion sort

24

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Work for insertion sort

25

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Work for insertion sort

26

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Work for insertion sort

27

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Work for insertion sort

28

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Work for insertion sort

28

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Work for insertion sort

28

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

b/c spec asserts
permutation

Work for insertion sort

29

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

So:

Work for insertion sort

29

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

So: Wisort(n) c1 + c2 n + Wisort(n-1)≤ ⋅

Work for insertion sort

29

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Consequently:

So: Wisort(n) c1 + c2 n + Wisort(n-1)≤ ⋅

Work for insertion sort

29

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Consequently: Wisort(n) is O(n2).

So: Wisort(n) c1 + c2 n + Wisort(n-1)≤ ⋅

Work for insertion sort

29

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Consequently: Wisort(n) is O(n2).

Note: again, no opportunity for parallelism.

So: Wisort(n) c1 + c2 n + Wisort(n-1)≤ ⋅

Work for insertion sort

29

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Consequently: Wisort(n) is O(n2).

Note: again, no opportunity for parallelism.

So: Wisort(n) c1 + c2 n + Wisort(n-1)≤ ⋅

Can we do better?

Divide and conquer: mergesort

30

Mergesort: divide and conquer

31

Mergesort: divide and conquer

31

Suppose, I want to sort the list

[9, 7, 5, 3, 4]

Mergesort: divide and conquer

31

Suppose, I want to sort the list

[9, 7, 5, 3, 4]

Divide the list into approximate halves:

Mergesort: divide and conquer

31

Suppose, I want to sort the list

[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

Mergesort: divide and conquer

32

Suppose, I want to sort the list

[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

Mergesort: divide and conquer

32

Suppose, I want to sort the list

[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

Mergesort: divide and conquer

32

Suppose, I want to sort the list

[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4]

Mergesort: divide and conquer

32

Suppose, I want to sort the list

[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

Mergesort: divide and conquer

33

Suppose, I want to sort the list

[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

Mergesort: divide and conquer

34

Suppose, I want to sort the list

[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

Mergesort: divide and conquer

35

Suppose, I want to sort the list

[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

Mergesort: divide and conquer

36

Suppose, I want to sort the list

[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

Mergesort: divide and conquer

37

Suppose, I want to sort the list

[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

Mergesort: divide and conquer

38

Suppose, I want to sort the list

[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

Mergesort: divide and conquer

39

Suppose, I want to sort the list

[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5] [7] [3]

Mergesort: divide and conquer

40

Suppose, I want to sort the list

[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5] [7] [3]

Mergesort: divide and conquer

41

Suppose, I want to sort the list

[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5] [7] [3]

Mergesort: divide and conquer

41

Suppose, I want to sort the list

[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3]

Mergesort: divide and conquer

42

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3]

Mergesort: divide and conquer

43

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3]

Mergesort: divide and conquer

43

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3]

Mergesort: divide and conquer

43

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3]

 ?≤

Mergesort: divide and conquer

43

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

 ?≤

Mergesort: divide and conquer

44

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

Mergesort: divide and conquer

44

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

Mergesort: divide and conquer

44

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

Mergesort: divide and conquer

44

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9] ?≤

Mergesort: divide and conquer

44

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9] ?≤

[4, 5, 9]

Mergesort: divide and conquer

45

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9]

Mergesort: divide and conquer

45

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9]

Mergesort: divide and conquer

45

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9] ?≤

[4, 5, 9]

Mergesort: divide and conquer

45

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9] ?≤

[4, 5, 9]

Mergesort: divide and conquer

46

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9]

Mergesort: divide and conquer

46

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9]

Mergesort: divide and conquer

46

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9]

Mergesort: divide and conquer

46

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9]

 ?≤

Mergesort: divide and conquer

46

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9]

 ?≤

[3, 7]

Mergesort: divide and conquer

47

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

Mergesort: divide and conquer

47

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

Mergesort: divide and conquer

47

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

Mergesort: divide and conquer

47

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] ?≤ [3, 7]

Mergesort: divide and conquer

47

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] ?≤ [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

48

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

48

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

48

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

48

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] ?≤ [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

49

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

49

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

49

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] ?≤ [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

50

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] ?≤ [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

50

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] ?≤ [3, 7]

[3, 4, 5, 7, 9]

Note, we use a list here.

Mergesort: divide and conquer

50

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] ?≤ [3, 7]

[3, 4, 5, 7, 9]

Note, we use a list here.

But there is almost a tree emerging…

Let’s write the mergesort function!

51

Let’s write the mergesort function!

51

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Let’s write the mergesort function!

52

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Let’s write the mergesort function!

53

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Let’s write the mergesort function!

54

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Let’s write the mergesort function!

55

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Let’s write the mergesort function!

56

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Let’s write the mergesort function!

57

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Let’s write the mergesort function!

58

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Let’s write the mergesort function!

59

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Now, let’s write split!

60

Now, let’s write split!

60

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)
fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

61

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

62

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

63

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

64

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

65

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

66

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

67

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

68

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

68

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

68

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Have we
established post-

condition?

Now, let’s write split!

68

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Have we
established post-

condition?

Prove in your head as you write code!

Work for split

69

Work for split

69

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work for split

70

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.

Wsplit(0) = c0
Wsplit(1) = c1
Wsplit(n) = c2 + Wsplit(n-2), for n 2≥

Work for split

71

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.
Equations:

Wsplit(0) = c0
Wsplit(1) = c1
Wsplit(n) = c2 + Wsplit(n-2), for n 2≥

Work for split

72

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.
Equations:

Wsplit(0) = c0
Wsplit(1) = c1
Wsplit(n) = c2 + Wsplit(n-2), for n 2≥

Work for split

73

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.
Equations:

Wsplit(0) = c0
Wsplit(1) = c1
Wsplit(n) = c2 + Wsplit(n-2), for n 2≥

Work for split

74

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.
Equations:

Wsplit(0) = c0
Wsplit(1) = c1
Wsplit(n) = c2 + Wsplit(n-2), for n 2≥

Work for split

75

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.
Equations:

Work for split

76

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.
Equations:
Wsplit(0) = c0
Wsplit(1) = c1
Wsplit(n) = c2 + Wsplit(n-2), for n 2≥

Work for split

77

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.
Equations:
Wsplit(0) = c0
Wsplit(1) = c1
Wsplit(n) = c2 + Wsplit(n-2), for n 2≥

Work for split

78

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.
Equations:
Wsplit(0) = c0
Wsplit(1) = c1
Wsplit(n) = c2 + Wsplit(n-2), for n 2≥
Consequently: Wsplit(n) is O(n).

Work for split

78

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.
Equations:
Wsplit(0) = c0
Wsplit(1) = c1
Wsplit(n) = c2 + Wsplit(n-2), for n 2≥
Consequently: Wsplit(n) is O(n).

no opportunity for
parallelism

Now, let’s write merge!

79

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

80

Now, let’s write merge!

80

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

81

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

82

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

83

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

84

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

85

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

86

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

87

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

88

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

89

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

90

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

91

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

92

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work for merge

93

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

93

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

94

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

95

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

96

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

97

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

98

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

99

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

100

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

101

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

102

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

103

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

104

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

105

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

106

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

106

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Consequently: Wmerge(n,m) is O(n+m).

Work for merge

106

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Consequently: Wmerge(n,m) is O(n+m).

Note: again, no opportunity for parallelism.

Finally, work for mergesort!

107

Finally, work for mergesort!

108

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

109

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

110

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

111

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

112

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

113

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

114

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

115

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

116

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

117

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

118

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

118

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

118

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

= ⌊n/2⌋

Finally, work for mergesort!

118

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

= ⌊n/2⌋

Finally, work for mergesort!

118

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

= ⌈n/2⌉= ⌊n/2⌋

Finally, work for mergesort!

119

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

120

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

121

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

c n + c’ n = (c + c’) n = c3 n

Finally, work for mergesort!

122

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

c n + c’ n = (c + c’) n = c3 n

Finally, work for mergesort!

123

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

c n + c’ n = (c + c’) n = c3 n

Finally, work for mergesort!

124

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

c n + c’ n = (c + c’) n = c3 n

Finally, work for mergesort!

125

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

c n + c’ n = (c + c’) n = c3 n

Finally, work for mergesort!

126

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

= ⌈n/2⌉= ⌊n/2⌋

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

c n + c’ n = (c + c’) n = c3 n

Finally, work for mergesort!

127

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

= ⌈n/2⌉= ⌊n/2⌋

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

c n + c’ n = (c + c’) n = c3 n

Finally, work for mergesort!

128

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

= ⌈n/2⌉= ⌊n/2⌋

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

c n + c’ n = (c + c’) n = c3 n

Finally, work for mergesort!

128

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

= ⌈n/2⌉= ⌊n/2⌋

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

c n + c’ n = (c + c’) n = c3 n

Let’s look at the tree method to find a closed form.

Finally, work for mergesort!

129

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

Finally, work for mergesort!

129

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

Finally, work for mergesort!

129

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

Finally, work for mergesort!

129

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4 c4 n/4 c4 n/4

Finally, work for mergesort!

129

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

Finally, work for mergesort!

130

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work per level:

Finally, work for mergesort!

130

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work per level:

c4 n

Finally, work for mergesort!

130

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work per level:

c4 n

c4 n

Finally, work for mergesort!

130

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work per level:

c4 n

c4 n

c4 n

Finally, work for mergesort!

130

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work per level:

c4 n

c4 n

c4 n

c4 n

Finally, work for mergesort!

130

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work per level:

c4 n

c4 n

c4 n

c4 n

log2 n

Finally, work for mergesort!

130

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work per level:

c4 n

c4 n

c4 n

c4 n

log2 n

Consequently:

Finally, work for mergesort!

130

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work per level:

c4 n

c4 n

c4 n

c4 n

log2 n

Consequently: Wmsort(n) is O(n log n).

Finally, work for mergesort!

130

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work per level:

c4 n

c4 n

c4 n

c4 n

log2 n

Consequently: Wmsort(n) is O(n log n).

Is there an opportunity for parallelism?

Span for mergesort for lists

131

Recall work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

Span for mergesort for lists

131

Recall work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

Span for mergesort for lists

131

Recall work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

parallelize recursive
calls on sub-lists

Span for mergesort for lists

131

Recall work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

parallelize recursive
calls on sub-listsmax!

Span for mergesort for lists

132

Span: Smsort(n) with n the list length.
Equations:
Smsort(0) = c0
Smsort(1) = c1
Smsort(n) = c2 + Ssplit(n) + max(Smsort(na), Smsort(nb))
 + Smerge(na,nb), for n = na + nb and n 2≥

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

parallelize recursive
calls on sub-listsmax!

Span for mergesort for lists

133

Equations:
Smsort(0) = c0
Smsort(1) = c1
Smsort(n) = c2 + Ssplit(n) + max(Smsort(na), Smsort(nb))
 + Smerge(na,nb), for n = na + nb and n 2≥

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

parallelize recursive
calls on sub-listsmax!

Span: Smsort(n) with n the list length.

Span for mergesort for lists

133

Equations:
Smsort(0) = c0
Smsort(1) = c1
Smsort(n) = c2 + Ssplit(n) + max(Smsort(na), Smsort(nb))
 + Smerge(na,nb), for n = na + nb and n 2≥

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

parallelize recursive
calls on sub-listsmax!

Span: Smsort(n) with n the list length.

Span for mergesort for lists

134

Equations:
Smsort(0) = c0
Smsort(1) = c1
Smsort(n) = c2 + Ssplit(n) + max(Smsort(na), Smsort(nb))
 + Smerge(na,nb), for n = na + nb and n 2≥

Smsort(n) c2 + c3 n + Smsort(n/2)
Smsort(n) c4 n + Smsort(n/2)

≤
≤

parallelize recursive
calls on sub-listsmax!

Span: Smsort(n) with n the list length.

Span for mergesort for lists

134

Equations:
Smsort(0) = c0
Smsort(1) = c1
Smsort(n) = c2 + Ssplit(n) + max(Smsort(na), Smsort(nb))
 + Smerge(na,nb), for n = na + nb and n 2≥

Smsort(n) c2 + c3 n + Smsort(n/2)
Smsort(n) c4 n + Smsort(n/2)

≤
≤

parallelize recursive
calls on sub-listsmax!

Span: Smsort(n) with n the list length.

Let’s look at the tree method to find a closed form.

Span for mergesort for lists

135

Wmsort(n) c4 n + Wmsort(n/2)≤

Span for mergesort for lists

135

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

Span for mergesort for lists

135

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Span for mergesort for lists

135

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

Span for mergesort for lists

135

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

Span for mergesort for lists

135

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

Span for mergesort for lists

135

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

Span for mergesort for lists

135

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

Span for mergesort for lists

135

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

Span for mergesort for lists

135

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

c4 n/22

Span for mergesort for lists

135

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

 c4 n (1 + 1/2 + 1/4 +…)≤
c4 n/22

Span for mergesort for lists

135

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

 c4 n (1 + 1/2 + 1/4 +…)≤
c4 n/22

 2 c4 n≤

Span for mergesort for lists

136

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

 c4 n (1 + 1/2 + 1/4 +…)≤
c4 n/22

 2 c4 n≤

Span for mergesort for lists

136

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

 c4 n (1 + 1/2 + 1/4 +…)≤
c4 n/22

 2 c4 n≤

Span for mergesort for lists

136

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

 c4 n (1 + 1/2 + 1/4 +…)≤
c4 n/22

 2 c4 n≤ Can we do better?

Span for mergesort for lists

137

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

c4 n/22

Can we do better?

Span for mergesort for lists

137

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

c4 n/22

Can we do better?

What if we were given a tree, rather than a list?

That's all for today. Have a good weekend!

138

