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• PH 100 (Section A-I), MM Breed Hall (Section J-L).

Scope: 
• Lectures: 1—8. 
• Labs: 1—4 and midterm review section of Lab 5. 
• Assignments: Basics, Induction, and Datatypes.

What you may have on your desk: 
• Writing utensils, something to drink/eat, tissues. 
• 8.5’’ x 11’’ cheatsheet (back and front), handwritten or typeset. 
• No cell phones, laptops, or any other smart devices.

2

Be on time; next 
lecture starts at 12:30pm!



Let's get started with sorting: insertion sort

3



Sorting

4



Sorting

4

Useful datatype:
datatype order = LESS | EQUAL | GREATER



Sorting

4

Useful datatype:
datatype order = LESS | EQUAL | GREATER

Eg:
Int.compare : int * int -> order
String.compare : string * string -> order



Sorting

5

Useful datatype:
datatype order = LESS | EQUAL | GREATER



Sorting

5

Useful datatype:
datatype order = LESS | EQUAL | GREATER

What does it mean to be sorted?



Sorting

5

Useful datatype:
datatype order = LESS | EQUAL | GREATER

What does it mean to be sorted?

Eg, for lists of integers:
A list of integers is sorted iff each integer in the list is no greater than 
all integers that occur to its right.



Sorting

5

Useful datatype:
datatype order = LESS | EQUAL | GREATER

What does it mean to be sorted?

Eg, for lists of integers:
A list of integers is sorted iff each integer in the list is no greater than 
all integers that occur to its right.

[..., x,..., y,...]



Sorting

5

Useful datatype:
datatype order = LESS | EQUAL | GREATER

What does it mean to be sorted?

Eg, for lists of integers:
A list of integers is sorted iff each integer in the list is no greater than 
all integers that occur to its right.

[..., x,..., y,...]

LESS | EQUAL



Warm-up: insertion sort for int lists

6



Warm-up: insertion sort for int lists

6

(* ins : int * int list -> int list 
   REQUIRES: L is sorted 
   ENSURES: ins(x, L) evaluates to sorted permutation of x::L 
*) 

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )



Warm-up: insertion sort for int lists

7

(* ins : int * int list -> int list 
   REQUIRES: L is sorted 
   ENSURES: ins(x, L) evaluates to sorted permutation of x::L 
*) 

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )



Warm-up: insertion sort for int lists

8

(* ins : int * int list -> int list 
   REQUIRES: L is sorted 
   ENSURES: ins(x, L) evaluates to sorted permutation of x::L 
*) 

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )



Warm-up: insertion sort for int lists

9

(* ins : int * int list -> int list 
   REQUIRES: L is sorted 
   ENSURES: ins(x, L) evaluates to sorted permutation of x::L 
*) 

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )



Warm-up: insertion sort for int lists

10

(* ins : int * int list -> int list 
   REQUIRES: L is sorted 
   ENSURES: ins(x, L) evaluates to sorted permutation of x::L 
*) 

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:



Warm-up: insertion sort for int lists

11

(* ins : int * int list -> int list 
   REQUIRES: L is sorted 
   ENSURES: ins(x, L) evaluates to sorted permutation of x::L 
*) 

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:



Warm-up: insertion sort for int lists

12

(* ins : int * int list -> int list 
   REQUIRES: L is sorted 
   ENSURES: ins(x, L) evaluates to sorted permutation of x::L 
*) 

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:



Warm-up: insertion sort for int lists

13

(* ins : int * int list -> int list 
   REQUIRES: L is sorted 
   ENSURES: ins(x, L) evaluates to sorted permutation of x::L 
*) 

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:



Warm-up: insertion sort for int lists

14

(* ins : int * int list -> int list 
   REQUIRES: L is sorted 
   ENSURES: ins(x, L) evaluates to sorted permutation of x::L 
*) 

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:



Warm-up: insertion sort for int lists

15

(* ins : int * int list -> int list 
   REQUIRES: L is sorted 
   ENSURES: ins(x, L) evaluates to sorted permutation of x::L 
*) 

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:



Warm-up: insertion sort for int lists

16

(* ins : int * int list -> int list 
   REQUIRES: L is sorted 
   ENSURES: ins(x, L) evaluates to sorted permutation of x::L 
*) 

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:



Warm-up: insertion sort for int lists

17

(* ins : int * int list -> int list 
   REQUIRES: L is sorted 
   ENSURES: ins(x, L) evaluates to sorted permutation of x::L 
*) 

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )



Warm-up: insertion sort for int lists

18

(* ins : int * int list -> int list 
   REQUIRES: L is sorted 
   ENSURES: ins(x, L) evaluates to sorted permutation of x::L 
*) 

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      ) 

(* isort : int list -> int list 
   REQUIRES: true 
   ENSURES: isort(L) evaluates to a sorted permutation of L 
*) 

fun isort ([ ] : int list) : int list = [ ] 
  | isort (x::L) = ins (x, isort L)



Warm-up: insertion sort for int lists

19

(* ins : int * int list -> int list 
   REQUIRES: L is sorted 
   ENSURES: ins(x, L) evaluates to sorted permutation of x::L 
*) 

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      ) 

(* isort : int list -> int list 
   REQUIRES: true 
   ENSURES: isort(L) evaluates to a sorted permutation of L 
*) 

fun isort ([ ] : int list) : int list = [ ] 
  | isort (x::L) = ins (x, isort L)



Warm-up: insertion sort for int lists

20

(* ins : int * int list -> int list 
   REQUIRES: L is sorted 
   ENSURES: ins(x, L) evaluates to sorted permutation of x::L 
*) 

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      ) 

(* isort : int list -> int list 
   REQUIRES: true 
   ENSURES: isort(L) evaluates to a sorted permutation of L 
*) 

fun isort ([ ] : int list) : int list = [ ] 
  | isort (x::L) = ins (x, isort L)



Warm-up: insertion sort for int lists

21

(* ins : int * int list -> int list 
   REQUIRES: L is sorted 
   ENSURES: ins(x, L) evaluates to sorted permutation of x::L 
*) 

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      ) 

(* isort : int list -> int list 
   REQUIRES: true 
   ENSURES: isort(L) evaluates to a sorted permutation of L 
*) 

fun isort ([ ] : int list) : int list = [ ] 
  | isort (x::L) = ins (x, isort L)



Warm-up: insertion sort for int lists

22

(* ins : int * int list -> int list 
   REQUIRES: L is sorted 
   ENSURES: ins(x, L) evaluates to sorted permutation of x::L 
*) 

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      ) 

(* isort : int list -> int list 
   REQUIRES: true 
   ENSURES: isort(L) evaluates to a sorted permutation of L 
*) 

fun isort ([ ] : int list) : int list = [ ] 
  | isort (x::L) = ins (x, isort L)



Work for insertion sort

23



Work for insertion sort

23

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )



Work for insertion sort

23

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )

Work: Wins(n) with n the list length.



Work for insertion sort

23

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )

Work: Wins(n) with n the list length.
Equations:



Work for insertion sort

23

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0 
Wins(n) = c1 + Wins(n-1), for first case clause 
Wins(n) = c2, for second case clause



Work for insertion sort

23

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0 
Wins(n) = c1 + Wins(n-1), for first case clause 
Wins(n) = c2, for second case clause



Work for insertion sort

23

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0 
Wins(n) = c1 + Wins(n-1), for first case clause 
Wins(n) = c2, for second case clause



Work for insertion sort

23

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0 
Wins(n) = c1 + Wins(n-1), for first case clause 
Wins(n) = c2, for second case clause



Work for insertion sort

23

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0 
Wins(n) = c1 + Wins(n-1), for first case clause 
Wins(n) = c2, for second case clause



Work for insertion sort

23

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0 
Wins(n) = c1 + Wins(n-1), for first case clause 
Wins(n) = c2, for second case clause



Work for insertion sort

23

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0 
Wins(n) = c1 + Wins(n-1), for first case clause 
Wins(n) = c2, for second case clause
Consequently:



Work for insertion sort

23

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0 
Wins(n) = c1 + Wins(n-1), for first case clause 
Wins(n) = c2, for second case clause
Consequently: Wins(n) is O(n).



Work for insertion sort

23

fun ins (x : int, [ ] : int list) : int list = [x] 
  | ins (x, y::L) = (case compare(x, y) of 
                        GREATER => y::ins(x, L) 
                        |  _    => x::y::L      )

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0 
Wins(n) = c1 + Wins(n-1), for first case clause 
Wins(n) = c2, for second case clause
Consequently: Wins(n) is O(n).

Note: no opportunity for parallelism.



Work for insertion sort

24



Work for insertion sort

24

fun isort ([ ] : int list) : int list = [ ] 
  | isort (x::L) = ins (x, isort L)



Work for insertion sort

24

fun isort ([ ] : int list) : int list = [ ] 
  | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.



Work for insertion sort

24

fun isort ([ ] : int list) : int list = [ ] 
  | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0 
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)



Work for insertion sort

25

fun isort ([ ] : int list) : int list = [ ] 
  | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0 
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)



Work for insertion sort

26

fun isort ([ ] : int list) : int list = [ ] 
  | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0 
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)



Work for insertion sort

27

fun isort ([ ] : int list) : int list = [ ] 
  | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0 
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)



Work for insertion sort

28

fun isort ([ ] : int list) : int list = [ ] 
  | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0 
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)



Work for insertion sort

28

fun isort ([ ] : int list) : int list = [ ] 
  | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0 
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)



Work for insertion sort

28

fun isort ([ ] : int list) : int list = [ ] 
  | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0 
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)
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fun isort ([ ] : int list) : int list = [ ] 
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Can we do better?
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[7] [3][4, 9]
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[3, 4, 5, 7, 9]

Note, we use a list here.

But there is almost a tree emerging…
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(* msort :   int list -> int list 
   REQUIRES: true 
   ENSURES:  msort(L) evaluates to a sorted 
             permutation of L. 
*) 
fun msort ([] : int list) : int list = [] 
  | msort [x] = [x] 
  | msort L =  
      let  
         val (A, B) = split L 
      in  
         merge(msort A, msort B) 
      end
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       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
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(* merge : int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
*) 

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))
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(* merge :   int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
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(* merge :   int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
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(* merge :   int list * int list -> int list 
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   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
*) 

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))



Now, let’s write merge!

84

(* merge :   int list * int list -> int list 
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(* merge :   int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
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(* merge :   int list * int list -> int list 
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(* merge :   int list * int list -> int list 
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(* merge :   int list * int list -> int list 
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(* merge :   int list * int list -> int list 
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(* merge :   int list * int list -> int list 
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Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m  0 

Wmerge(n,0) = c1, for all n  0 
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥
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fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m  0 

Wmerge(n,0) = c1, for all n  0 
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥



Work for merge

102
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Consequently: Wmerge(n,m) is O(n+m).
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Consequently: Wmerge(n,m) is O(n+m).

Note: again, no opportunity for parallelism.
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fun msort ([] : int list) : int list = [] 
  | msort [x] = [x] 
  | msort L =  
      let  
         val (A, B) = split L 
      in  
         merge(msort A, msort B) 
      end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0 
Wmsort(1) = c1 
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb) 
            + Wmerge(na,nb), for n = na + nb and n  2≥
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Let’s look at the tree method to find a closed form.
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Consequently: Wmsort(n) is O(n log n).

Is there an opportunity for parallelism?
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Let’s look at the tree method to find a closed form.
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span:

c4 n

c4 n/2

c4 n/22

 c4 n (1 + 1/2 + 1/4 +…)≤
c4 n/22

 2 c4 n≤
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c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

 c4 n (1 + 1/2 + 1/4 +…)≤
c4 n/22

 2 c4 n≤ Can we do better?
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Wmsort(n)  c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
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Wmsort(n)  c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

c4 n/22

Can we do better?

What if we were given a tree, rather than a list?



That's all for today.  Have a good weekend!
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