Cost analysis — work and span

15-150
Lecture 7: September 16, 2025

Stephanie Balzer
Carnegie Mellon University

| ast week

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

-} recursive call corresponds to inductive hypothesis

“programs as proofs”!

| ast week

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

-} recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

-} recursive calls give rise to recurrence

-} closed form solutions of recurrences for work

“programs as recurrences’!

| ast week

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

-} recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

-} recursive calls give rise to recurrence

-} closed form solutions of recurrences for work

-} This week, we revisit work and also look at span

-> today: work (sequential evalualigs mealc| evaluation)

o d Thursday: sorting mergesort -

Work analysis: list reversal

Reversing a list

(x rev: int list —> int 1list
REQUIRES: true
ENSURES: rev L returns the elements of L
1n reverse order.
*)

Reversing a list

(x rev: int list —> int 1list
REQUIRES: true
ENSURES: rev L returns the elements of L

1n reverse order.
*)

fun rev ([] : int list) : int list = []

val [] : int list = rev []
val [4,3,2,1] : int list = rev [1,2,3,4]

Reversing a list

(x rev: int list —> int 1list
REQUIRES: true
ENSURES: rev L returns the elements of L

1n reverse order.
*)

fun rev ([] : int list) : int list = []

| rev (x::xs) =

val [] : int list = rev []
val [4,3,2,1] : int list = rev [1,2,3,4]

Reversing a list

(x rev: int list —> int 1list
REQUIRES: true
ENSURES: rev L returns the elements of L
1n reverse order.

*)

fun rev ([] : int list) : int list = T[]
| rev (x::xs) = (rev xs) @ [x]

val [] : int list = rev []

val [4,3,2,1] : int list = rev [1,2,3,4]

-} What is the work of reverse”?

Work analysis for rev

fun rev ([] : int list) : int list
| rev (x::xs) = (rev xs) @ [x]
Work: Wrev(n) with n the list length.

Recurrence relation:
Wrev(O) = Co
Wrev(n) =C1+Wrev(n'1) + ?

[]

10

Work analysis for rev

fun rev ([] : int list) : int list = []
| rev (x::xs) = (rev xs) @ [x]
Work: Wrev(n) with n the list length.

Recurrence relation:
Wrev(O) = Co Recall: W@(m1’ m2) IS O(m1)

Wrev(n) =C1+Wrev(n'1) +W@(n'1,1)
Finding closed form:)
Wrev(n) < c1+Wrev(n-1) + c2-(n-1)

Wrev(n) < c1+con+Weev(n-1)

Lemma: For all list values L, Llength(rev(L)) = Llength(L).

11

Work analysis for rev

fun rev ([] : int list) : int list = []
| rev (x::xs) = (rev xs) @ [x]

Work: Wrev(n) with n the list length.

Finding closed form:
Wrev(n) < c1+Wrev(n-1) + c2-(n-1)

Wrev(n) < C1+Co:nN+ Wrev(n'1)
< C1+ C2:n+(c1 + c2:(N-1) + Wrey(n-2))

= C1+ C2:N + (C1 + C2:(N-1) + (€1 + C2:(nN-2) + Wrev(n-3)))

Wrev(n) =

12

Work analysis for rev

fun rev ([] : int list) : int list = []
| rev (x::xs) = (rev xs) @ [x]

Work: Wrev(n) with n the list length.

Finding closed form:

A

Wrev(n) < c1+Wrev(n-1) + c2-(n-1)

Wrev(n) c1 4+ c2:n + Wrev(n-1)

IA

IA

C1 + C2:n + (C1 + C2:(n-1) + Wrev(n-2))

. |/\

C1 + C2:n + (C1 + c2:(n-1) + (c1 + c2:(N-2) + Wrev(n-3)))

Wrev(n) = ¢o + n-c1 + 1/2:n-(n+1)-c2

Sum of first n positive integers is 1/2-n+(n+1)

13

Work analysis for rev

fun rev ([] : int list) : int list = []
| rev (x::xs) = (rev xs) @ [x]

Work: Wrev(n) with n the list length.

Finding closed form:
Wrev(n) < c1+Wrev(n-1) + c2-(n-1)

Wrev(n) < c14+con+Wrev(n-1)

IA

C1 + C2:n + (C1 + C2:(n-1) + Wrev(n-2))

. |/\

C1 + C2:n + (C1 + C2:(n-1) + (c1 + Cc2:(N-2) + Wrev(n-3)))

Wrev(n) = ¢y + n-c1 + 1/2:n-(n+1)-c2
?
Consequently: Wrey(n) is O(n?). Can we do better":

Reversing a list: can we do better?

(* trev : int list *|int list|-> int list

REQUIRES: true
ENSURES:
*)

15

Reversing a list: can we do better?

(x trev : int list x int list —> int list
REQUIRES: true
ENSURES:

*)

16

Reversing a list: can we do better?

(x trev : int list *x int list —> int list
REQUIRES: true
ENSURES: trev(L, acc) ==

*)

17

Reversing a list: can we do better?

(x trev : int list % int list —> int list
REQUIRES: true
ENSURES: trev(L, acc) == (rev L) @ acc
*)

18

Reversing a list: can we do better?

(x trev : int list % int list —> int list
REQUIRES: true
ENSURES: trev(L, acc) == (rev L) @ acc
*)

fun trev ([] : int list, acc : int list) : int list =

19

Reversing a list: can we do better?

(x trev : int list % int list —> int list
REQUIRES: true
ENSURES: trev(L, acc) == (rev L) @ acc
*)

fun trev ([] : int list, acc : int list) : int list

aCC

20

Reversing a list: can we do better?

(x trev : int list % int list —> int list
REQUIRES: true
ENSURES: trev(L, acc) == (rev L) @ acc
*)

fun trev ([] : int list, acc : int list) : int Tlist
| trev (x::xs, acc) =

aCC

21

Reversing a list: can we do better?

(x trev : int list % int list —> int list
REQUIRES: true
ENSURES: trev(L, acc) == (rev L) @ acc
*)

fun trev ([] : int list, acc : int list) : int Tlist
| trev (x::xs, acc) = trev(xs, x::acc)

aCC

22

Reversing a list: can we do better?

(x trev : int list x int list —> int list
REQUIRES: true
ENSURES: trev(L, acc) == (rev L) @ acc

*)

fun trev ([] : int list, acc : int list) : int Tlist

| trev (x::xs, acc) = trev(xs, x::acc)

fun reverse (L : int list) : int list = trev(L, [])

-

Before determining work for trev, are rev and trev

extensional equivalent?

aCC

23

Are rev and trev extensional equivalent’?

Theorem: For all values L: int listandacc: int list,
trev(L,acc) = (rev L) @ acc.

—} Prove this theorem as an exercise!

. d Ve provide the solution in the notes (rev.pdf). But try first!

24

Work analysis for trev

fun trev ([] : int list, acc : int list) : int list = acc
| trev (x::xs, acc) = trev(xs, x::acc)

Work: Wtrev(n, m) with n the list length and m the accumulator length.

Recurrence relation:
Wtrev(o, m) = Co

Wtrev(n, m) = c1 + Wtrev(n'1, m+1)

Finding closed form:

Wtrev(n, m) < c1+ Wtrev(n'1, m+1)

< €1+ (€1 + Werev(n-2, m+2))

Wtrev(n, m) Co + N+C1

25

Work analysis for trev

fun trev ([] : int list, acc : int list) : int list = acc
| trev (x::xs, acc) = trev(xs, x::acc)

Work: Wtrev(n, m) with n the list length and m the accumulator length.
Recurrence relation:

Wirev (0, m) = co

Wirev(n, m) = c1 + Werev(n-1, m+1)

Finding closed form:

Wtrev(n, m) = Co + N-C1

Consequently: Wirev(n) is O(n).

-

Note: Using the recurrence relation we can prove the closed

form by induction on n.

Work and span analysis: tree sum

27

Summing integers in a tree

28

Summing integers in a tree

datatype tree

Empty | Node of tree x int x tree

29

Summing integers in a tree

datatype tree = Empty | Node of tree % int *x tree

(%
sum : tree —> 1nt
REQUIRES: true
ENSURES: sum(T) evaluates to the sum of
all the integers 1in T.
*)

30

Summing integers in a tree

datatype tree = Empty | Node of tree % int *x tree

(%
sum : tree —> 1nt
REQUIRES: true
ENSURES: sum(T) evaluates to the sum of
all the integers 1in T.
*)

fun sum (Empty : tree) : int =

31

Summing integers in a tree

datatype tree = Empty | Node of tree % int *x tree

(%
sum : tree —> 1nt
REQUIRES: true
ENSURES: sum(T) evaluates to the sum of
all the integers 1in T.
*)

fun sum (Empty : tree) : int =0
|

32

Summing integers in a tree

datatype tree = Empty | Node of tree % int *x tree

(%
sum : tree —> 1nt
REQUIRES: true
ENSURES: sum(T) evaluates to the sum of
all the integers 1in T.
*)

fun sum (Empty : tree) : int = 0
| sum (Node(1l,x,r)) =

33

Summing integers in a tree

datatype tree = Empty | Node of tree % int *x tree

(%
sum : tree —> 1nt
REQUIRES: true
ENSURES: sum(T) evaluates to the sum of
all the integers 1in T.
*)

fun sum (Empty : tree) : int = 0
| sum (Node(1l,x,r)) = (sum 1) + (sum r) + X

34

Work analysis for sum

fun sum (Empty : tree) : int = 0
| sum (Node(1l,x,r)) = (sum 1) + (sum r) + X

Work: Wsum(n) with n the number of integers in a tree t.

Recurrence relation:
Wsum (0) = Co

Wsun(n) = c1 4+ Wsum(ni) + Wsum(nr)

number number
of integers In left of integers In right
subtree subtree

35

Work analysis for sum

Recurrence relation:

Wsum(0) = co
Wsun(n) = c1 4+ Wsum(ni) + Wsum(nr)

-} To find a closed form, let's employ the "tree method".

-} visualize work at each node/leaf:

/01\
c; o
01/ \01 A binary
7N tree has n nodes

Co Co Co Co
and n+1 leaves

Closed form: Wsum(n) =n-c1 + (n+1)-co

36

Work analysis for sum

Recurrence relation:
Wsum (0) = Co

Wsun(n) = c1 4+ Wsum(ni) + Wsum(nr)

Closed form: Wsum(n) =n-c1 + (n+1)-co

Consequently: Wsum(n) is O(n).

37

s there an opportunity for parallelism?

fun sum (Empty : tree) : int = 0
| sum (Node(1l,x,r)) = (sum 1) + (sum r) + X

Recurrence relation:
Wsum(0) = co
Wsun(n) = c1 4+ Wsum(ni) + Wsum(nr)

number number
of integers Iin left of integers in right
subtree subtree

-} Let's evaluate the two recursive calls in parallel!

-} Valid b/c no data dependencies between L and r (thanks to FP).

s there an opportunity for parallelism?

fun sum (Empty : tree) : int = 0
| sum (Node(1l,x,r)) = (sum 1) + (sum r) + X

Recurrence relation:
Ssum(0) = co
Ssum(n) =c1 + maX(Ssum(nl) ’ Ssum(nr))

number number
of integers Iin left of integers in right
subtree subtree

-} Let's evaluate the two recursive calls in parallel!

-} Valid b/c no data dependencies between L and r (thanks to FP).

Span analysis for sum

fun sum (Empty : tree) : int = 0
| sum (Node(1l,x,r)) = (sum 1) + (sum r) + X

Recurrence relation:
Ssum (0) = Co

Ssum(n) =c1+ maX(Ssum(nl) ’ Ssum(nr))
Finding closed form with no balance assumption:
Ssum(n) <c1+ maX(Ssum(n'1) ’ Ssum(o))

< ¢1+ Ssun(n-1)

Consequently: Ssum(n) is O(n), w/o balance.

40

Span analysis for sum

fun sum (Empty : tree) : int = 0
| sum (Node(1l,x,r)) = (sum 1) + (sum r) + X

Recurrence relation:
Ssum(0) = co
Ssum(n) =c1+ maX(Ssum(nl) ’ Ssum(nr))
Finding closed form with balance assumption:
Ssum(n) ~ C1 + maX(Ssum(n/Q) ’ Ssum(n/2))
= Cq1 + Ssum(n/Z)
= C1 + C1 + Ssun(n/4)
Ssum(n) = Co + (UOg nJ)°C1

Consequently: Ssum(n) is O(log n), with balance.

41

Span analysis for sum (with depth)

fun sum (Empty : tree) : int = 0
| sum (Node(1l,x,r)) = (sum 1) + (sum r) + X

Recurrence relation, now with depth d rather than number of integers:
Ssun(0) = co
Ssum(d) =c1+ maX(Ssum(d'1) ’ Ssum(d'))

Finding closed form: d' < d-1
Ssun(d) % C1+ Ssum(d-1)

Ssum(n) = co + d-c

Consequently: Ssum(d) is O(d), where d = log(n), if balanced.

42

Visualize work/span for sum (with depth)

C1 C1 2CH
/7 \ /7 \
C1 C1 C1 C1 4C+
C1 .. C1 2d-1C_I
/7 \ /7 \
Co Co Co Co Z29co

Wsum(d) = (20+ 21 4+ ... + 2d-1).cq 4 2d.co < 2d+1.¢
< 2d max(Co, C1)

43

Visualize work/span for sum (with depth)

C1 C1 2CH
/7 \ /7 \
C1 C1 C1 C1 4C+
C1 .. C1 2d-1C_I
/7 \ /7 \
Co Co Co Co Z29co

Wsum(d) = (20+ 21 4+ ... + 2d-1).cq 4 2d.co < 2d+1.¢

Ssum(d) =(1+1+ ... +1)-c1+co<d-cC
d-1 times max(Co, C1)

44

That's all for today. See you on Thursday!

