Cost analysis — work and span

15-150

Lecture 7: September 16, 2025

Stephanie Balzer Carnegie Mellon University

Last week

In week 2 we discovered (and exploited) the correspondence between programs and **proofs**.

recursive call corresponds to inductive hypothesis

"programs as proofs"!

Last week

In week 2 we discovered (and exploited) the correspondence between programs and **proofs**.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence between programs and asymptotic analysis.

recursive calls give rise to recurrence

closed form solutions of recurrences for work

"programs as recurrences"!

Last week

In week 2 we discovered (and exploited) the correspondence between programs and **proofs**.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence between programs and **asymptotic analysis**.

recursive calls give rise to recurrence

closed form solutions of recurrences for work

This week, we revisit work and also look at span

today: work (sequential evaluation)

Thursday: sorting

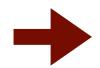
mergesort

Work analysis: list reversal

```
(* rev: int list -> int list
   REQUIRES: true
   ENSURES: rev L returns the elements of L
            in reverse order.
*)
fun rev ([] : int list) : int list = []
val [] : int list = rev []
val [4,3,2,1]: int list = rev [1,2,3,4]
```

```
(* rev: int list -> int list
   REQUIRES: true
   ENSURES: rev L returns the elements of L
            in reverse order.
*)
fun rev ([] : int list) : int list = []
  | rev (x::xs) =
val [] : int list = rev []
val [4,3,2,1]: int list = rev [1,2,3,4]
```

```
(* rev: int list -> int list
   REQUIRES: true
   ENSURES: rev L returns the elements of L
            in reverse order.
*)
fun rev ([] : int list) : int list = []
  | rev(x::xs) = (rev xs) @ [x]
val [] : int list = rev []
val [4,3,2,1]: int list = rev [1,2,3,4]
```



What is the **work** of reverse?

Work: $W_{rev}(n)$ with n the list length.

Recurrence relation:

$$W_{rev}(0) = c_0$$

 $W_{rev}(n) = c_1 + W_{rev}(n-1) + ?$

Work: $W_{rev}(n)$ with n the list length.

Recurrence relation:

```
W_{rev}(0) = c_0 Recall: W_e(m_1, m_2) is O(m_1) W_{rev}(n) = c_1 + W_{rev}(n-1) + W_e(n-1, 1) Finding closed form: W_{rev}(n) \le c_1 + W_{rev}(n-1) + c_2 \cdot (n-1) W_{rev}(n) \le c_1 + c_2 \cdot n + W_{rev}(n-1)
```

Lemma: For all list values L, $length(rev(L)) \cong length(L)$.

```
\begin{split} W_{rev}(n) &\leq c_1 + W_{rev}(n-1) + c_2 \cdot (n-1) \\ W_{rev}(n) &\leq c_1 + c_2 \cdot n + W_{rev}(n-1) \\ &\leq c_1 + c_2 \cdot n + (c_1 + c_2 \cdot (n-1) + W_{rev}(n-2)) \\ &\leq c_1 + c_2 \cdot n + (c_1 + c_2 \cdot (n-1) + (c_1 + c_2 \cdot (n-2) + W_{rev}(n-3))) \\ &\vdots \\ W_{rev}(n) &= \end{split}
```

Work: $W_{rev}(n)$ with n the list length.

Finding closed form:

$$\begin{split} W_{rev}(n) &\leq c_1 + W_{rev}(n-1) + c_2 \cdot (n-1) \\ W_{rev}(n) &\leq c_1 + c_2 \cdot n + W_{rev}(n-1) \\ &\leq c_1 + c_2 \cdot n + (c_1 + c_2 \cdot (n-1) + W_{rev}(n-2)) \\ &\leq c_1 + c_2 \cdot n + (c_1 + c_2 \cdot (n-1) + (c_1 + c_2 \cdot (n-2) + W_{rev}(n-3))) \\ &\vdots \\ W_{rev}(n) &= c_0 + n \cdot c_1 + 1/2 \cdot n \cdot (n+1) \cdot c_2 \end{split}$$

Sum of first n positive integers is 1/2·n·(n+1)

Work: $W_{rev}(n)$ with n the list length.

Finding closed form:

```
\begin{split} W_{rev}(n) &\leq c_1 + W_{rev}(n-1) + c_2 \cdot (n-1) \\ W_{rev}(n) &\leq c_1 + c_2 \cdot n + W_{rev}(n-1) \\ &\leq c_1 + c_2 \cdot n + (c_1 + c_2 \cdot (n-1) + W_{rev}(n-2)) \\ &\leq c_1 + c_2 \cdot n + (c_1 + c_2 \cdot (n-1) + (c_1 + c_2 \cdot (n-2) + W_{rev}(n-3))) \\ &\vdots \\ W_{rev}(n) &= c_0 + n \cdot c_1 + 1/2 \cdot n \cdot (n+1) \cdot c_2 \end{split}
```

Consequently: $W_{rev}(n)$ is $O(n^2)$.

Can we do better?

```
(* trev : int list * int list -> int list
    REQUIRES: true
    ENSURES:
*)
accumulator
```

```
(* trev : int list * int list -> int list
    REQUIRES: true
    ENSURES:
*)
```

```
(* trev : int list * int list -> int list
    REQUIRES: true
    ENSURES: trev(L, acc) ==
*)
```

```
(* trev : int list * int list -> int list
    REQUIRES: true
    ENSURES: trev(L, acc) == (rev L) @ acc
*)
```

```
(* trev : int list * int list -> int list
    REQUIRES: true
    ENSURES: trev(L, acc) == (rev L) @ acc
*)

fun trev ([] : int list, acc : int list) : int list =
```

```
(* trev : int list * int list -> int list
    REQUIRES: true
    ENSURES: trev(L, acc) == (rev L) @ acc
*)

fun trev ([] : int list, acc : int list) : int list = acc
```

```
(* trev : int list * int list -> int list
   REQUIRES: true
   ENSURES: trev(L, acc) == (rev L) @ acc
*)

fun trev ([] : int list, acc : int list) : int list = acc
   | trev (x::xs, acc) =
```

```
(* trev : int list * int list -> int list
   REQUIRES: true
   ENSURES: trev(L, acc) == (rev L) @ acc
*)

fun trev ([] : int list, acc : int list) : int list = acc
   | trev (x::xs, acc) = trev(xs, x::acc)
```

```
(* trev : int list * int list -> int list
   REQUIRES: true
   ENSURES: trev(L, acc) == (rev L) @ acc
*)

fun trev ([] : int list, acc : int list) : int list = acc
   | trev (x::xs, acc) = trev(xs, x::acc)

fun reverse (L : int list) : int list = trev(L, [])
```


Before determining work for trev, are rev and trev extensional equivalent?

Are rev and trev extensional equivalent?

Theorem: For all values L: int list and acc: int list, trev(L,acc) \cong (rev L) @ acc.

- Prove this theorem as an exercise!
- We provide the solution in the notes (rev.pdf). But try first!

Work: $W_{trev}(n, m)$ with n the list length and m the accumulator length.

Recurrence relation:

```
W_{trev}(0, m) = c_0

W_{trev}(n, m) = c_1 + W_{trev}(n-1, m+1)
```

Finding closed form:

```
W_{trev}(n, m) \le c_1 + W_{trev}(n-1, m+1)
\le c_1 + (c_1 + W_{trev}(n-2, m+2))
\vdots
W_{trev}(n, m) = c_0 + n \cdot c_1
```

Work: $W_{trev}(n, m)$ with n the list length and m the accumulator length.

Recurrence relation:

$$W_{trev}(0, m) = c_0$$

 $W_{trev}(n, m) = c_1 + W_{trev}(n-1, m+1)$

Finding closed form:

$$W_{trev}(n, m) = c_0 + n \cdot c_1$$

Consequently: Wtrev(n) is O(n).

Note: Using the recurrence relation we can prove the closed form by induction on n.

Work and span analysis: tree sum

```
datatype tree = Empty | Node of tree * int * tree
```

```
datatype tree = Empty | Node of tree * int * tree

(*
    sum : tree -> int
    REQUIRES: true
    ENSURES: sum(T) evaluates to the sum of
        all the integers in T.
*)
```

```
datatype tree = Empty | Node of tree * int * tree
(*
   sum : tree -> int
   REQUIRES: true
   ENSURES: sum(T) evaluates to the sum of
            all the integers in T.
*)
fun sum (Empty : tree) : int =
```

```
datatype tree = Empty | Node of tree * int * tree
(*
   sum : tree -> int
   REQUIRES: true
   ENSURES: sum(T) evaluates to the sum of
            all the integers in T.
*)
fun sum (Empty : tree) : int = 0
```

```
datatype tree = Empty | Node of tree * int * tree
(*
   sum : tree -> int
   REQUIRES: true
   ENSURES: sum(T) evaluates to the sum of
            all the integers in T.
*)
fun sum (Empty : tree) : int = 0
  I sum (Node(l,x,r)) =
```

```
datatype tree = Empty | Node of tree * int * tree
(*
   sum : tree -> int
   REQUIRES: true
   ENSURES: sum(T) evaluates to the sum of
            all the integers in T.
*)
fun sum (Empty : tree) : int = 0
    sum (Node(l,x,r)) = (sum l) + (sum r) + x
```

Work analysis for sum

```
fun sum (Empty: tree): int = 0
| sum (Node(l,x,r)) = (sum l) + (sum r) + x
```

Work: $W_{sum}(n)$ with n the number of integers in a tree t.

Recurrence relation:

$$W_{sum}(0) = c_0$$

$$W_{sum}(n) = c_1 + W_{sum}(n_l) + W_{sum}(n_r)$$

number of integers in left subtree number of integers in right subtree

Work analysis for sum

Recurrence relation:

$$W_{sum}(0) = c_0$$

$$W_{sum}(n) = c_1 + W_{sum}(n_l) + W_{sum}(n_r)$$

To find a closed form, let's employ the "tree method".

visualize work at each node/leaf:

$$C_1$$
 C_0 C_0 C_0 C_0 C_0 C_0

A binary tree has n nodes and n+1 leaves

Closed form: $W_{sum}(n) = n \cdot c1 + (n+1) \cdot c_0$

Work analysis for sum

Recurrence relation:

```
W_{sum}(0) = c_0

W_{sum}(n) = c_1 + W_{sum}(n_l) + W_{sum}(n_r)
```

Closed form: $W_{sum}(n) = n \cdot c1 + (n+1) \cdot c_0$

Consequently: $W_{sum}(n)$ is O(n).

Is there an opportunity for parallelism?

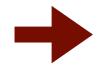
```
fun sum (Empty: tree): int = 0
| sum (Node(l,x,r)) = (sum l) + (sum r) + x
```

Recurrence relation:

$$W_{sum}(0) = c_0$$

$$W_{sum}(n) = c_1 + W_{sum}(n_l) + W_{sum}(n_r)$$

number of integers in left subtree number of integers in right subtree



Let's evaluate the two recursive calls in parallel!

Valid b/c no data dependencies between ${\bf l}$ and ${\bf r}$ (thanks to FP).

Is there an opportunity for parallelism?

```
fun sum (Empty: tree): int = 0
| sum (Node(l,x,r)) = (sum l) + (sum r) + x
```

Recurrence relation:

```
S_{sum}(0) = c_0

S_{sum}(n) = c_1 + \max(S_{sum}(n_I), S_{sum}(n_r))
```

number of integers in left subtree number of integers in right subtree

Let's evaluate the two recursive calls in parallel!

Valid b/c no data dependencies between ${\bf l}$ and ${\bf r}$ (thanks to FP).

Span analysis for sum

```
fun sum (Empty: tree): int = 0
| sum (Node(l,x,r)) = (sum l) + (sum r) + x
```

Recurrence relation:

```
S_{sum}(0) = c_0

S_{sum}(n) = c_1 + \max(S_{sum}(n_l), S_{sum}(n_r))
```

Finding closed form with no balance assumption:

$$S_{sum}(n) \le c_1 + \max(S_{sum}(n-1), S_{sum}(0))$$

 $\le c_1 + S_{sum}(n-1)$

Consequently: $S_{sum}(n)$ is O(n), w/o balance.

Span analysis for sum

```
fun sum (Empty: tree): int = 0
| sum (Node(l,x,r)) = (sum l) + (sum r) + x
```

Recurrence relation:

```
S_{sum}(0) = c_0

S_{sum}(n) = c_1 + max(S_{sum}(n_I), S_{sum}(n_r))
```

Finding closed form with balance assumption:

```
S_{sum}(n) \approx c_1 + max(S_{sum}(n/2), S_{sum}(n/2))
= c_1 + S_{sum}(n/2)
= c_1 + c_1 + S_{sum}(n/4)
\vdots
S_{sum}(n) = c_0 + (\lfloor \log n \rfloor) \cdot c_1
```

Consequently: $S_{sum}(n)$ is O(log n), with balance.

Span analysis for sum (with depth)

```
fun sum (Empty: tree): int = 0
| sum (Node(l,x,r)) = (sum l) + (sum r) + x
```

Recurrence relation, now with depth d rather than number of integers:

$$S_{sum}(0) = c_0$$

$$S_{sum}(d) = c_1 + max(S_{sum}(d-1), S_{sum}(d'))$$

Finding closed form:

$$d' \leq d-1$$

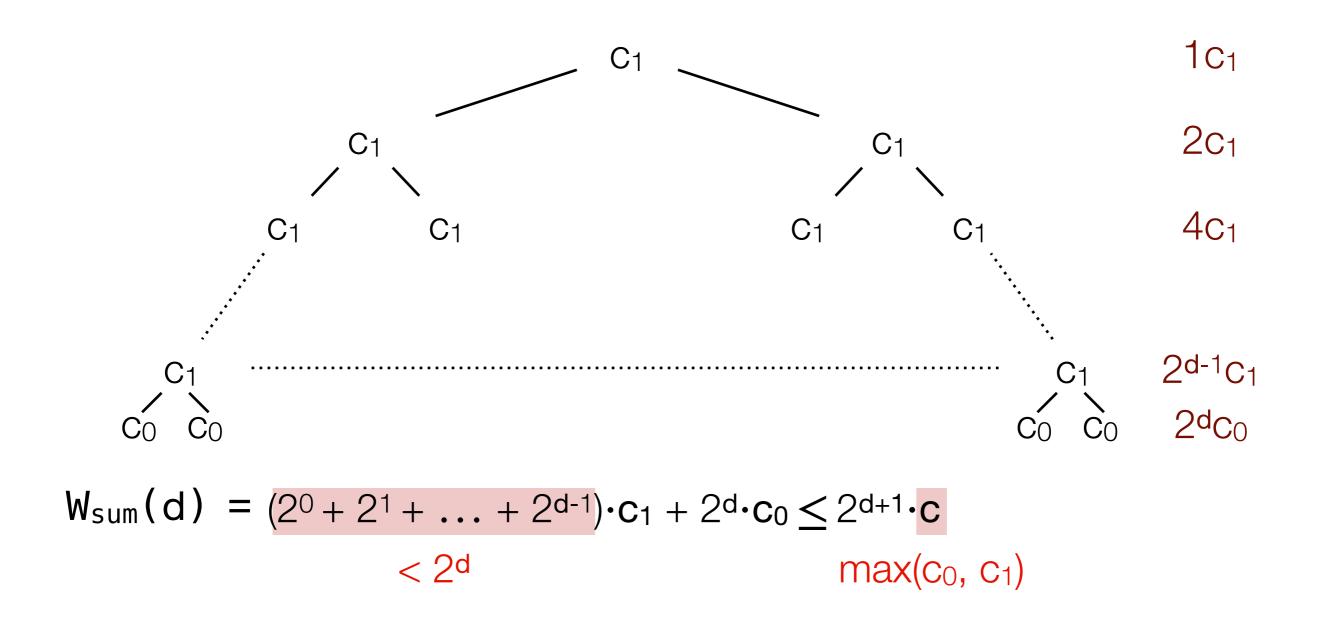
$$S_{sum}(d) \approx c_1 + S_{sum}(d-1)$$

$$\vdots$$

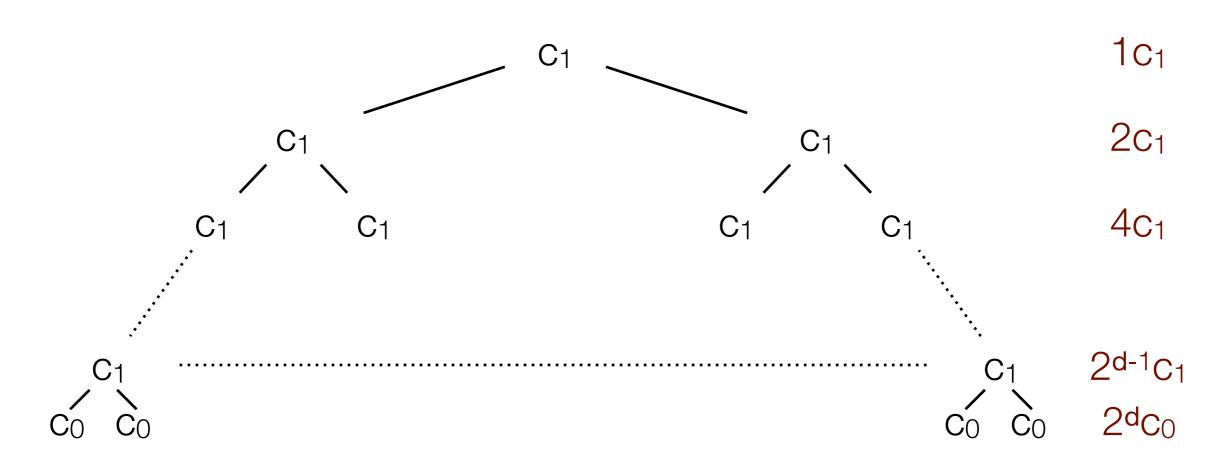
$$S_{sum}(n) = c_0 + d \cdot c_1$$

Consequently: $S_{sum}(d)$ is O(d), where d = log(n), if balanced.

Visualize work/span for sum (with depth)



Visualize work/span for sum (with depth)



$$W_{sum}(d) = (2^0 + 2^1 + ... + 2^{d-1}) \cdot c_1 + 2^{d} \cdot c_0 \le 2^{d+1} \cdot c$$

$$S_{sum}(d) = (1 + 1 + ... + 1) \cdot c_1 + c_0 \le d \cdot c$$

 $d-1 \text{ times}$ $max(c_0, c_1)$

That's all for today. See you on Thursday!