
Cost analysis — work and span

15-150
Lecture 7: September 16, 2025

Stephanie Balzer
Carnegie Mellon University

1

Last week

2

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

recursive call corresponds to inductive hypothesis

“programs as proofs”!

Last week

3

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

recursive calls give rise to recurrence

closed form solutions of recurrences for work

“programs as recurrences”!

Last week

4

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

recursive calls give rise to recurrence

closed form solutions of recurrences for work

This week, we revisit work and also look at span
today: work (sequential evaluation), span (parallel evaluation)

Thursday: sorting mergesort

Work analysis: list reversal

5

Reversing a list

6

(* rev: int list -> int list
 REQUIRES: true
 ENSURES: rev L returns the elements of L
 in reverse order.
*)

fun rev ([] : int list) : int list = []
 | rev (x::xs) = (rev xs) @ [x]

val [] : int list = rev []
val [4,3,2,1] : int list = rev [1,2,3,4]

Reversing a list

7

(* rev: int list -> int list
 REQUIRES: true
 ENSURES: rev L returns the elements of L
 in reverse order.
*)

fun rev ([] : int list) : int list = []
 | rev (x::xs) = (rev xs) @ [x]

val [] : int list = rev []
val [4,3,2,1] : int list = rev [1,2,3,4]

Reversing a list

8

(* rev: int list -> int list
 REQUIRES: true
 ENSURES: rev L returns the elements of L
 in reverse order.
*)

fun rev ([] : int list) : int list = []
 | rev (x::xs) = (rev xs) @ [x]

val [] : int list = rev []
val [4,3,2,1] : int list = rev [1,2,3,4]

Reversing a list

9

(* rev: int list -> int list
 REQUIRES: true
 ENSURES: rev L returns the elements of L
 in reverse order.
*)

fun rev ([] : int list) : int list = []
 | rev (x::xs) = (rev xs) @ [x]

val [] : int list = rev []
val [4,3,2,1] : int list = rev [1,2,3,4]

What is the work of reverse?

Work analysis for rev

10

fun rev ([] : int list) : int list = []
 | rev (x::xs) = (rev xs) @ [x]

Work: Wrev(n) with n the list length.

Recurrence relation:

Wrev(0) = c0

Wrev(n) = c1 + Wrev(n-1) + ?

Work analysis for rev

11

fun rev ([] : int list) : int list = []
 | rev (x::xs) = (rev xs) @ [x]

Work: Wrev(n) with n the list length.

Recurrence relation:

Wrev(0) = c0

Wrev(n) = c1 + Wrev(n-1) + W@(n-1, 1)
Finding closed form:

Wrev(n) ≤ c1 + Wrev(n-1) + c2 (n-1)⋅
Wrev(n) ≤ c1 + c2 n + Wrev(n-1) ⋅

Recall: W@(m1, m2) is O(m1)

Lemma: For all list values L, length(rev(L)) length(L).≅

Work analysis for rev

12

fun rev ([] : int list) : int list = []
 | rev (x::xs) = (rev xs) @ [x]

Work: Wrev(n) with n the list length.

Finding closed form:

Wrev(n) ≤ c1 + Wrev(n-1) + c2 (n-1)⋅
Wrev(n) ≤ c1 + c2 n + Wrev(n-1) ⋅

≤ c1 + c2 n + (c1 + c2 (n-1) + Wrev(n-2))⋅ ⋅
≤ c1 + c2 n + (c1 + c2 (n-1) + (c1 + c2 (n-2) + Wrev(n-3)))⋅ ⋅ ⋅

=Wrev(n)

Work analysis for rev

13

fun rev ([] : int list) : int list = []
 | rev (x::xs) = (rev xs) @ [x]

Work: Wrev(n) with n the list length.

Finding closed form:

Wrev(n) ≤ c1 + Wrev(n-1) + c2 (n-1)⋅
Wrev(n) ≤ c1 + c2 n + Wrev(n-1) ⋅

≤ c1 + c2 n + (c1 + c2 (n-1) + Wrev(n-2))⋅ ⋅
≤ c1 + c2 n + (c1 + c2 (n-1) + (c1 + c2 (n-2) + Wrev(n-3)))⋅ ⋅ ⋅

= c0 + n c1 + 1/2 n (n+1) c2⋅ ⋅ ⋅ ⋅Wrev(n)

Sum of first n positive integers is 1/2 n (n+1)⋅ ⋅

Work analysis for rev

14

fun rev ([] : int list) : int list = []
 | rev (x::xs) = (rev xs) @ [x]

Work: Wrev(n) with n the list length.

Finding closed form:

Wrev(n) ≤ c1 + Wrev(n-1) + c2 (n-1)⋅
Wrev(n) ≤ c1 + c2 n + Wrev(n-1) ⋅

≤ c1 + c2 n + (c1 + c2 (n-1) + Wrev(n-2))⋅ ⋅
≤ c1 + c2 n + (c1 + c2 (n-1) + (c1 + c2 (n-2) + Wrev(n-3)))⋅ ⋅ ⋅

= c0 + n c1 + 1/2 n (n+1) c2⋅ ⋅ ⋅ ⋅Wrev(n)

Consequently: Wrev(n) is O(n2). Can we do better?

Reversing a list: can we do better?

15

(* trev : int list * int list -> int list
 REQUIRES: true
 ENSURES: trev(L, acc) == (rev L) @ acc
*) accumulator

Reversing a list: can we do better?

16

(* trev : int list * int list -> int list
 REQUIRES: true
 ENSURES: trev(L, acc) == (rev L) @ acc
*)

Reversing a list: can we do better?

17

(* trev : int list * int list -> int list
 REQUIRES: true
 ENSURES: trev(L, acc) == (rev L) @ acc
*)

Reversing a list: can we do better?

18

(* trev : int list * int list -> int list
 REQUIRES: true
 ENSURES: trev(L, acc) == (rev L) @ acc
*)

Reversing a list: can we do better?

19

(* trev : int list * int list -> int list
 REQUIRES: true
 ENSURES: trev(L, acc) == (rev L) @ acc
*)

fun trev ([] : int list, acc : int list) : int list = acc
 | trev (x::xs, acc) = trev(xs, x::acc)

Reversing a list: can we do better?

20

(* trev : int list * int list -> int list
 REQUIRES: true
 ENSURES: trev(L, acc) == (rev L) @ acc
*)

fun trev ([] : int list, acc : int list) : int list = acc
 | trev (x::xs, acc) = trev(xs, x::acc)

Reversing a list: can we do better?

21

(* trev : int list * int list -> int list
 REQUIRES: true
 ENSURES: trev(L, acc) == (rev L) @ acc
*)

fun trev ([] : int list, acc : int list) : int list = acc
 | trev (x::xs, acc) = trev(xs, x::acc)

Reversing a list: can we do better?

22

(* trev : int list * int list -> int list
 REQUIRES: true
 ENSURES: trev(L, acc) == (rev L) @ acc
*)

fun trev ([] : int list, acc : int list) : int list = acc
 | trev (x::xs, acc) = trev(xs, x::acc)

fun reverse (L : int list) : int list = trev(L, [])

Reversing a list: can we do better?

23

(* trev : int list * int list -> int list
 REQUIRES: true
 ENSURES: trev(L, acc) == (rev L) @ acc
*)

fun trev ([] : int list, acc : int list) : int list = acc
 | trev (x::xs, acc) = trev(xs, x::acc)

fun reverse (L : int list) : int list = trev(L, [])

Before determining work for trev, are rev and trev
extensional equivalent?

Are rev and trev extensional equivalent?

24

Theorem: For all values L: int list and acc: int list,
trev(L,acc) (rev L) @ acc.≅

Prove this theorem as an exercise!

We provide the solution in the notes (rev.pdf). But try first!

Work analysis for trev

25

fun trev ([] : int list, acc : int list) : int list = acc
 | trev (x::xs, acc) = trev(xs, x::acc)

Work: Wtrev(n, m) with n the list length and m the accumulator length.

Recurrence relation:

Wtrev(0, m) = c0

Wtrev(n, m) = c1 + Wtrev(n-1, m+1)
Finding closed form:

Wtrev(n, m) ≤ c1 + Wtrev(n-1, m+1)
≤ c1 + (c1 + Wtrev(n-2, m+2))

= c0 + n c1⋅Wtrev(n, m)

Work analysis for trev

26

fun trev ([] : int list, acc : int list) : int list = acc
 | trev (x::xs, acc) = trev(xs, x::acc)

Work: Wtrev(n, m) with n the list length and m the accumulator length.

Recurrence relation:

Wtrev(0, m) = c0

Wtrev(n, m) = c1 + Wtrev(n-1, m+1)

Consequently: Wtrev(n) is O(n).

Finding closed form:

= c0 + n c1⋅Wtrev(n, m)

Note: Using the recurrence relation we can prove the closed
form by induction on n.

Work and span analysis: tree sum

27

Summing integers in a tree

28

datatype tree = Empty | Node of tree * int * tree

(*
 sum : tree -> int
 REQUIRES: true
 ENSURES: sum(T) evaluates to the sum of
 all the integers in T.
*)

fun sum (Empty : tree) : int = 0
 | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Summing integers in a tree

29

datatype tree = Empty | Node of tree * int * tree

(*
 sum : tree -> int
 REQUIRES: true
 ENSURES: sum(T) evaluates to the sum of
 all the integers in T.
*)

fun sum (Empty : tree) : int = 0
 | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Summing integers in a tree

30

datatype tree = Empty | Node of tree * int * tree

(*
 sum : tree -> int
 REQUIRES: true
 ENSURES: sum(T) evaluates to the sum of
 all the integers in T.
*)

fun sum (Empty : tree) : int = 0
 | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Summing integers in a tree

31

datatype tree = Empty | Node of tree * int * tree

(*
 sum : tree -> int
 REQUIRES: true
 ENSURES: sum(T) evaluates to the sum of
 all the integers in T.
*)

fun sum (Empty : tree) : int = 0
 | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Summing integers in a tree

32

datatype tree = Empty | Node of tree * int * tree

(*
 sum : tree -> int
 REQUIRES: true
 ENSURES: sum(T) evaluates to the sum of
 all the integers in T.
*)

fun sum (Empty : tree) : int = 0
 | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Summing integers in a tree

33

datatype tree = Empty | Node of tree * int * tree

(*
 sum : tree -> int
 REQUIRES: true
 ENSURES: sum(T) evaluates to the sum of
 all the integers in T.
*)

fun sum (Empty : tree) : int = 0
 | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Summing integers in a tree

34

datatype tree = Empty | Node of tree * int * tree

(*
 sum : tree -> int
 REQUIRES: true
 ENSURES: sum(T) evaluates to the sum of
 all the integers in T.
*)

fun sum (Empty : tree) : int = 0
 | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Work analysis for sum

35

fun sum (Empty : tree) : int = 0
 | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Work: Wsum(n) with n the number of integers in a tree t.
Recurrence relation:

Wsum(0) = c0

Wsum(n) = c1 + Wsum(nl) + Wsum(nr)

number
of integers in right

subtree

number
of integers in left

subtree

Work analysis for sum

36

Recurrence relation:

Wsum(0) = c0

Wsum(n) = c1 + Wsum(nl) + Wsum(nr)

To find a closed form, let's employ the "tree method".

visualize work at each node/leaf:

c1

c1

c1 c1

c0

c0 c0 c0 c0

Closed form: Wsum(n) = n c1 + (n+1) c0⋅ ⋅

A binary
tree has n nodes
and n+1 leaves

Work analysis for sum

37

Recurrence relation:

Wsum(0) = c0

Wsum(n) = c1 + Wsum(nl) + Wsum(nr)

Closed form: Wsum(n) = n c1 + (n+1) c0⋅ ⋅
Consequently: Wsum(n) is O(n).

Is there an opportunity for parallelism?

38

fun sum (Empty : tree) : int = 0
 | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Recurrence relation:

Wsum(0) = c0

Wsum(n) = c1 + Wsum(nl) + Wsum(nr)

number
of integers in right

subtree

number
of integers in left

subtree

Let's evaluate the two recursive calls in parallel!

Valid b/c no data dependencies between l and r (thanks to FP).

Is there an opportunity for parallelism?

39

fun sum (Empty : tree) : int = 0
 | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Recurrence relation:

Ssum(0) = c0

Ssum(n) = c1 + max(Ssum(nl), Ssum(nr))

number
of integers in right

subtree

number
of integers in left

subtree

Let's evaluate the two recursive calls in parallel!

Valid b/c no data dependencies between l and r (thanks to FP).

Span analysis for sum

40

fun sum (Empty : tree) : int = 0
 | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Recurrence relation:

Ssum(0) = c0

Ssum(n) = c1 + max(Ssum(nl), Ssum(nr))

Finding closed form with no balance assumption:

Ssum(n) ≤ c1 + max(Ssum(n-1), Ssum(0))

≤ c1 + Ssum(n-1)

Consequently: Ssum(n) is O(n), w/o balance.

Span analysis for sum

41

fun sum (Empty : tree) : int = 0
 | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Recurrence relation:

Ssum(0) = c0

Ssum(n) = c1 + max(Ssum(nl), Ssum(nr))

Finding closed form with balance assumption:

Ssum(n) ≈ c1 + max(Ssum(n/2), Ssum(n/2))
= c1 + Ssum(n/2)

Consequently: Ssum(n) is O(log n), with balance.

= c1 + c1 + Ssum(n/4)

= c0 + () c1⌊𝗅𝗈𝗀 n⌋ ⋅Ssum(n)

Span analysis for sum (with depth)

42

fun sum (Empty : tree) : int = 0
 | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Recurrence relation, now with depth d rather than number of integers:

Ssum(0) = c0

Ssum(d) = c1 + max(Ssum(d-1), Ssum(d'))

Finding closed form:

Ssum(d) ≈ c1 + Ssum(d-1)

Consequently: Ssum(d) is O(d), where d = log(n), if balanced.

= c0 + d c1⋅Ssum(n)

d' d-1≤

Visualize work/span for sum (with depth)

43

1c1

2c1

4c1

2d-1c1

c1

c1 c1

c1 c1

c1 c1

c1 c1

c0 c0c0 c0 2dc0

= (20 + 21 + + 2d-1) c1 + 2d c0 2d+1 c… ⋅ ⋅ ≤ ⋅Wsum(d)
< 2d max(c0, c1)

Visualize work/span for sum (with depth)

44

1c1

2c1

4c1

2d-1c1

c1

c1 c1

c1 c1

c1 c1

c1 c1

c0 c0c0 c0 2dc0

= (20 + 21 + + 2d-1) c1 + 2d c0 2d+1 c… ⋅ ⋅ ≤ ⋅Wsum(d)
= (1 + 1 + + 1) c1 + c0 d c… ⋅ ≤ ⋅Ssum(d)

d-1 times max(c0, c1)

That's all for today. See you on Thursday!

45

