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Last week
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In week 2 we discovered (and exploited) the correspondence 
between programs and proofs.

recursive call corresponds to inductive hypothesis

“programs as proofs”!
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“programs as recurrences”!



Last week
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In week 2 we discovered (and exploited) the correspondence 
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence 
between programs and asymptotic analysis.

recursive calls give rise to recurrence

closed form solutions of recurrences for work

This week, we revisit work and also look at span
today: work (sequential evaluation), span (parallel evaluation)

Thursday: sorting mergesort



Work analysis: list reversal
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Reversing a list
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(* rev: int list -> int list 
   REQUIRES: true 
   ENSURES: rev L returns the elements of L 
            in reverse order. 
*) 

fun rev ([] : int list) : int list = [] 
  | rev (x::xs) = (rev xs) @ [x] 

val [] : int list = rev [] 
val [4,3,2,1] : int list = rev [1,2,3,4]
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(* rev: int list -> int list 
   REQUIRES: true 
   ENSURES: rev L returns the elements of L 
            in reverse order. 
*) 
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  | rev (x::xs) = (rev xs) @ [x] 
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Reversing a list
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(* rev: int list -> int list 
   REQUIRES: true 
   ENSURES: rev L returns the elements of L 
            in reverse order. 
*) 

fun rev ([] : int list) : int list = [] 
  | rev (x::xs) = (rev xs) @ [x] 

val [] : int list = rev [] 
val [4,3,2,1] : int list = rev [1,2,3,4]

What is the work of reverse?



Work analysis for rev

10

fun rev ([] : int list) : int list = [] 
  | rev (x::xs) = (rev xs) @ [x]

Work: Wrev(n) with n the list length.

Recurrence relation:

Wrev(0) = c0

Wrev(n) = c1 + Wrev(n-1) + ?



Work analysis for rev
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fun rev ([] : int list) : int list = [] 
  | rev (x::xs) = (rev xs) @ [x]

Work: Wrev(n) with n the list length.

Recurrence relation:

Wrev(0) = c0

Wrev(n) = c1 + Wrev(n-1) + W@(n-1, 1)
Finding closed form:

Wrev(n) ≤ c1 + Wrev(n-1) + c2 (n-1)⋅
Wrev(n) ≤ c1 + c2 n + Wrev(n-1) ⋅

Recall: W@(m1, m2) is O(m1)

Lemma: For all list values L, length(rev(L))  length(L).≅



Work analysis for rev
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fun rev ([] : int list) : int list = [] 
  | rev (x::xs) = (rev xs) @ [x]

Work: Wrev(n) with n the list length.

Finding closed form:

Wrev(n) ≤ c1 + Wrev(n-1) + c2 (n-1)⋅
Wrev(n) ≤ c1 + c2 n + Wrev(n-1) ⋅

≤ c1 + c2 n + (c1 + c2 (n-1) + Wrev(n-2))⋅ ⋅
≤ c1 + c2 n + (c1 + c2 (n-1) + (c1 + c2 (n-2) + Wrev(n-3)))⋅ ⋅ ⋅

=Wrev(n)



Work analysis for rev
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fun rev ([] : int list) : int list = [] 
  | rev (x::xs) = (rev xs) @ [x]

Work: Wrev(n) with n the list length.

Finding closed form:

Wrev(n) ≤ c1 + Wrev(n-1) + c2 (n-1)⋅
Wrev(n) ≤ c1 + c2 n + Wrev(n-1) ⋅

≤ c1 + c2 n + (c1 + c2 (n-1) + Wrev(n-2))⋅ ⋅
≤ c1 + c2 n + (c1 + c2 (n-1) + (c1 + c2 (n-2) + Wrev(n-3)))⋅ ⋅ ⋅

= c0 + n c1 + 1/2 n (n+1) c2⋅ ⋅ ⋅ ⋅Wrev(n)

Sum of first n positive integers is 1/2 n (n+1)⋅ ⋅



Work analysis for rev
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fun rev ([] : int list) : int list = [] 
  | rev (x::xs) = (rev xs) @ [x]

Work: Wrev(n) with n the list length.

Finding closed form:

Wrev(n) ≤ c1 + Wrev(n-1) + c2 (n-1)⋅
Wrev(n) ≤ c1 + c2 n + Wrev(n-1) ⋅

≤ c1 + c2 n + (c1 + c2 (n-1) + Wrev(n-2))⋅ ⋅
≤ c1 + c2 n + (c1 + c2 (n-1) + (c1 + c2 (n-2) + Wrev(n-3)))⋅ ⋅ ⋅

= c0 + n c1 + 1/2 n (n+1) c2⋅ ⋅ ⋅ ⋅Wrev(n)

Consequently: Wrev(n) is O(n2). Can we do better?



Reversing a list: can we do better?
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(* trev : int list * int list -> int list 
   REQUIRES: true 
   ENSURES:  trev(L, acc) == (rev L) @ acc 
*) accumulator
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(* trev : int list * int list -> int list 
   REQUIRES: true 
   ENSURES:  trev(L, acc) == (rev L) @ acc 
*)
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(* trev : int list * int list -> int list 
   REQUIRES: true 
   ENSURES:  trev(L, acc) == (rev L) @ acc 
*) 

fun trev ([] : int list, acc : int list) : int list = acc 
  | trev (x::xs, acc) = trev(xs, x::acc)
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(* trev : int list * int list -> int list 
   REQUIRES: true 
   ENSURES:  trev(L, acc) == (rev L) @ acc 
*) 

fun trev ([] : int list, acc : int list) : int list = acc 
  | trev (x::xs, acc) = trev(xs, x::acc)
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(* trev : int list * int list -> int list 
   REQUIRES: true 
   ENSURES:  trev(L, acc) == (rev L) @ acc 
*) 

fun trev ([] : int list, acc : int list) : int list = acc 
  | trev (x::xs, acc) = trev(xs, x::acc)



Reversing a list: can we do better?
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(* trev : int list * int list -> int list 
   REQUIRES: true 
   ENSURES:  trev(L, acc) == (rev L) @ acc 
*) 

fun trev ([] : int list, acc : int list) : int list = acc 
  | trev (x::xs, acc) = trev(xs, x::acc) 

fun reverse (L : int list) : int list = trev(L, [])



Reversing a list: can we do better?

23

(* trev : int list * int list -> int list 
   REQUIRES: true 
   ENSURES:  trev(L, acc) == (rev L) @ acc 
*) 

fun trev ([] : int list, acc : int list) : int list = acc 
  | trev (x::xs, acc) = trev(xs, x::acc) 

fun reverse (L : int list) : int list = trev(L, [])

Before determining work for trev, are rev and trev 
extensional equivalent?



Are rev and trev extensional equivalent?
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Theorem: For all values L: int list and acc: int list, 
trev(L,acc)  (rev L) @ acc.≅

Prove this theorem as an exercise!

We provide the solution in the notes (rev.pdf).  But try first!



Work analysis for trev
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fun trev ([] : int list, acc : int list) : int list = acc 
  | trev (x::xs, acc) = trev(xs, x::acc)

Work: Wtrev(n, m) with n the list length and m the accumulator length.

Recurrence relation:

Wtrev(0, m) = c0

Wtrev(n, m) = c1 + Wtrev(n-1, m+1)
Finding closed form:

Wtrev(n, m) ≤ c1 + Wtrev(n-1, m+1)
≤ c1 + (c1 + Wtrev(n-2, m+2))

= c0 + n c1⋅Wtrev(n, m)



Work analysis for trev
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fun trev ([] : int list, acc : int list) : int list = acc 
  | trev (x::xs, acc) = trev(xs, x::acc)

Work: Wtrev(n, m) with n the list length and m the accumulator length.

Recurrence relation:

Wtrev(0, m) = c0

Wtrev(n, m) = c1 + Wtrev(n-1, m+1)

Consequently: Wtrev(n) is O(n).

Finding closed form:

= c0 + n c1⋅Wtrev(n, m)

Note: Using the recurrence relation we can prove the closed 
form by induction on n.



Work and span analysis: tree sum
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Summing integers in a tree

28

datatype tree = Empty | Node of tree * int * tree 

(* 
   sum : tree -> int 
   REQUIRES: true 
   ENSURES: sum(T) evaluates to the sum of 
            all the integers in T. 
*) 

fun sum (Empty : tree) : int = 0 
  | sum (Node(l,x,r)) = (sum l) + (sum r) + x
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datatype tree = Empty | Node of tree * int * tree 

(* 
   sum : tree -> int 
   REQUIRES: true 
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            all the integers in T. 
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fun sum (Empty : tree) : int = 0 
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datatype tree = Empty | Node of tree * int * tree 

(* 
   sum : tree -> int 
   REQUIRES: true 
   ENSURES: sum(T) evaluates to the sum of 
            all the integers in T. 
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fun sum (Empty : tree) : int = 0 
  | sum (Node(l,x,r)) = (sum l) + (sum r) + x



Summing integers in a tree
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datatype tree = Empty | Node of tree * int * tree 

(* 
   sum : tree -> int 
   REQUIRES: true 
   ENSURES: sum(T) evaluates to the sum of 
            all the integers in T. 
*) 

fun sum (Empty : tree) : int = 0 
  | sum (Node(l,x,r)) = (sum l) + (sum r) + x



Summing integers in a tree
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datatype tree = Empty | Node of tree * int * tree 

(* 
   sum : tree -> int 
   REQUIRES: true 
   ENSURES: sum(T) evaluates to the sum of 
            all the integers in T. 
*) 

fun sum (Empty : tree) : int = 0 
  | sum (Node(l,x,r)) = (sum l) + (sum r) + x



Summing integers in a tree
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datatype tree = Empty | Node of tree * int * tree 

(* 
   sum : tree -> int 
   REQUIRES: true 
   ENSURES: sum(T) evaluates to the sum of 
            all the integers in T. 
*) 

fun sum (Empty : tree) : int = 0 
  | sum (Node(l,x,r)) = (sum l) + (sum r) + x



Work analysis for sum
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fun sum (Empty : tree) : int = 0 
  | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Work: Wsum(n) with n the number of integers in a tree t.
Recurrence relation:

Wsum(0) = c0

Wsum(n) = c1 + Wsum(nl) + Wsum(nr)

number 
of integers in right 

subtree

number 
of integers in left 

subtree



Work analysis for sum
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Recurrence relation:

Wsum(0) = c0

Wsum(n) = c1 + Wsum(nl) + Wsum(nr)

To find a closed form, let's employ the "tree method".

visualize work at each node/leaf:

c1

c1

c1 c1

c0

c0 c0 c0 c0

Closed form: Wsum(n) = n c1 + (n+1) c0⋅ ⋅

A binary 
tree has n nodes 
and n+1 leaves



Work analysis for sum
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Recurrence relation:

Wsum(0) = c0

Wsum(n) = c1 + Wsum(nl) + Wsum(nr)

Closed form: Wsum(n) = n c1 + (n+1) c0⋅ ⋅
Consequently: Wsum(n) is O(n).



Is there an opportunity for parallelism?
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fun sum (Empty : tree) : int = 0 
  | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Recurrence relation:

Wsum(0) = c0

Wsum(n) = c1 + Wsum(nl) + Wsum(nr)

number 
of integers in right 

subtree

number 
of integers in left 

subtree

Let's evaluate the two recursive calls in parallel!

Valid b/c no data dependencies between l and r (thanks to FP).



Is there an opportunity for parallelism?
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fun sum (Empty : tree) : int = 0 
  | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Recurrence relation:

Ssum(0) = c0

Ssum(n) = c1 + max(Ssum(nl), Ssum(nr))

number 
of integers in right 

subtree

number 
of integers in left 

subtree

Let's evaluate the two recursive calls in parallel!

Valid b/c no data dependencies between l and r (thanks to FP).



Span analysis for sum
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fun sum (Empty : tree) : int = 0 
  | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Recurrence relation:

Ssum(0) = c0

Ssum(n) = c1 + max(Ssum(nl), Ssum(nr))

Finding closed form with no balance assumption:

Ssum(n) ≤ c1 + max(Ssum(n-1),  Ssum(0))

≤ c1 + Ssum(n-1)

Consequently: Ssum(n) is O(n), w/o balance.



Span analysis for sum
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fun sum (Empty : tree) : int = 0 
  | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Recurrence relation:

Ssum(0) = c0

Ssum(n) = c1 + max(Ssum(nl), Ssum(nr))

Finding closed form with balance assumption:

Ssum(n) ≈ c1 + max(Ssum(n/2), Ssum(n/2))
= c1 + Ssum(n/2)

Consequently: Ssum(n) is O(log n), with balance.

= c1 + c1 + Ssum(n/4)

= c0 + ( ) c1⌊𝗅𝗈𝗀 n⌋ ⋅Ssum(n)



Span analysis for sum (with depth)
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fun sum (Empty : tree) : int = 0 
  | sum (Node(l,x,r)) = (sum l) + (sum r) + x

Recurrence relation, now with depth d rather than number of integers:

Ssum(0) = c0

Ssum(d) = c1 + max(Ssum(d-1), Ssum(d'))

Finding closed form:

Ssum(d) ≈ c1 + Ssum(d-1)

Consequently: Ssum(d) is O(d), where d = log(n), if balanced.

= c0 + d c1⋅Ssum(n)

d'  d-1≤



Visualize work/span for sum (with depth)
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1c1

2c1

4c1

2d-1c1

c1

c1 c1

c1 c1

c1 c1

c1 c1

c0 c0c0 c0 2dc0

= (20 + 21 +  + 2d-1) c1 + 2d c0  2d+1 c… ⋅ ⋅ ≤ ⋅Wsum(d)
< 2d max(c0, c1)



Visualize work/span for sum (with depth)
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1c1

2c1

4c1

2d-1c1

c1

c1 c1

c1 c1

c1 c1

c1 c1

c0 c0c0 c0 2dc0

= (20 + 21 +  + 2d-1) c1 + 2d c0  2d+1 c… ⋅ ⋅ ≤ ⋅Wsum(d)
= (1 + 1 +  + 1) c1 + c0  d c… ⋅ ≤ ⋅Ssum(d)

d-1 times max(c0, c1)



That's all for today.  See you on Thursday!
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