
15-150

Fall 2025

Lecture 6 - Part 2

Cost Analysis

Today
• Work (sequential runtime) and span

(parallel runtime)

• Recurrence relations

• Exact and approximate solutions

• Improving efficiency

program recurrence work/span

Asymptotic
• We assume basic ops take constant time

• Want to find running time f(n), for large n

• an estimate, independent of architecture

• Give big-O classification

f(n) is O(g(n))

if there are N and c such that

∀n≥N, f(n) ≤ c.g(n)

• Ignore additive constants

• Absorb multiplicative constants

• Be as accurate as you can

• Use and learn common terminology

n5+1000000 is O(n5)

1000000n5 is O(n5)

O(n2) ⊂ O(n3) ⊂ O(n4)

logarithmic, linear,
polynomial, exponential

work
• W(e), the work of e, is the time needed to

evaluate e sequentially, on a single processor

• count each operation as constant-time

• work = total number of operations

• Often have a function foo and a notion of size
for argument values, and want to find
Wfoo(n), the work of foo(v) when v has size n

May want exact or asymptotic estimate

Appending lists
(* @ : int list * int list -> int list
 REQUIRES: true
 ENSURES: @(l,r) returns the list consisting of l
 followed by r
 NOTE: this is also predefined in SML as the right-
 associative infix operator @.
*)

infixr (op @);

fun ([]:int list) @ (Y:int list)= Y
 | (x::xs) @ Y = x :: (xs @ Y)

Evaluating @
[1,2] @ [5,~6,7] ==> 1 :: ([2] @ [5,~6,7])

==> 1 :: (2 :: ([] @[5,~6,7]))

==> 1 :: (2 :: [5,~6,7])

==> 1 :: [2, 5,~6,7]

==> [1, 2, 5,~6,7]

The last 2 lines are not really “steps”.

They are just different representations of the same value

fun ([]:int list) @ (Y:int list)= Y
 | (x::xs) @ Y = x :: (xs @ Y)

Appending lists
(* @ : int list * int list -> int list
 REQUIRES: true
 ENSURES: @(l,r) returns the list consisting of l
 followed by r
 NOTE: this is also predefined in SML as the right-
 associative infix operator @.
*)

infixr (op @);

fun ([]:int list) @ (Y:int list)= Y
 | (x::xs) @ Y = x :: (xs @ Y)

What is the time complexity? For a list with n elements, O(n)
For a list of length len, O(len)

Analyzing append
fun [] @ Y = Y
 | (x::xs) @ Y = x :: (xs@Y)

W@(0, m) = c0 for some c0, and all m

W@(n, m)

size of first list size of second list

Work of @

W@(n, m) = c1 + W@(n-1, m) for some c1, and all m

Equation for base case:

Equation for recursive clause for n > 0:

Solving: W@(0, m) = c0

 W@(n, m) = c1 + W@(n-1, m)

Unrolling:
W@(n, m) = c1 + c1 + W@(n-2, m)

= c1 + c1 + c1 + W@(n-3, m)

= n.c1 + c0

……

Easy to prove by induction that W@(n, m) = n.c1 + c0

O(n)

To be continued next week!

