

Today

• More practice with lists and trees (Part 1)
• Asymptotic cost analysis using recurrences (Part 2)

ANOTHER KIND OF TREE

A new datatype for trees

datatype tree = Leaf of int | Node of tree * tree

1 2

3

flatten

datatype tree = Leaf of int | Node of tree * tree

(* flatten : tree -> int list

 REQUIRES: true

 ENSURES: flatten(t) returns a list of the leaf

 values as they are encountered in the

 inorder traversal of t

*)

[1,2,3]

1 2

3

(* @ : int list * int list -> int list

 REQUIRES: true

 ENSURES: @(l,r) returns the list consisting of l

 followed by r

 NOTE: this is also predefined in SML as the right-

 associative infix operator @.

*)

Appending lists

infixr (op @);

fun ([]:int list) @ (Y:int list)= Y

 | (x::xs) @ Y = x :: (xs @ Y)

val [1,2] = [] @ [1,2]

val [1,2,5,6] = [1,2] @ [5,6]

flatten

datatype tree = Leaf of int | Node of tree * tree

(* flatten : tree -> int list

 REQUIRES: true

 ENSURES: flatten(t) returns a list of the leaf

 values as they are encountered in the

 inorder traversal of t

*)

fun flatten (Leaf(x) : tree) : int list =

 | flatten (Node(t1, t2)) =

flatten

datatype tree = Leaf of int | Node of tree * tree

(* flatten : tree -> int list

 REQUIRES: true

 ENSURES: flatten(t) returns a list of the leaf

 values as they are encountered in the

 inorder traversal of t

*)

fun flatten (Leaf(x) : tree) : int list = [x]

 | flatten (Node(t1, t2)) =

flatten

datatype tree = Leaf of int | Node of tree * tree

(* flatten : tree -> int list

 REQUIRES: true

 ENSURES: flatten(t) returns a list of the leaf

 values as they are encountered in the

 inorder traversal of t

*)

fun flatten (Leaf(x) : tree) : int list = [x]

 | flatten (Node(t1, t2)) = flatten (t1) @ flatten (t2)

flatten with accumulator
(* flatten2 : tree * int list-> int list

 REQUIRES: true

 ENSURES: …

*)

flatten with accumulator
(* flatten2 : tree * int list -> int list

 REQUIRES: true

 ENSURES: flatten2(t, acc) ≅ flatten(t) @ acc
*)

flatten with accumulator
(* flatten2 : tree * int list -> int list

 REQUIRES: true

 ENSURES: flatten2(t, acc) ≅ flatten(t) @ acc
*)

fun flatten2 (Leaf(x), acc) =

flatten with accumulator
(* flatten2 : tree * int list -> int list

 REQUIRES: true

 ENSURES: flatten2(t, acc) ≅ flatten(t) @ acc
*)

fun flatten2 (Leaf(x), acc) = x :: acc

 | flatten2 …

flatten with accumulator
(* flatten2 : tree * int list -> int list

 REQUIRES: true

 ENSURES: flatten2(t, acc) ≅ flatten(t) @ acc
*)

fun flatten2 (Leaf(x), acc) = x :: acc

 | flatten2 (Node(t1,t2), acc) =

flatten with accumulator
(* flatten2 : tree * int list -> int list

 REQUIRES: true

 ENSURES: flatten2(t, acc) ≅ flatten(t) @ acc
*)

fun flatten2 (Leaf(x), acc) = x :: acc

 | flatten2 (Node(t1,t2), acc) =

 flatten2(t1,(flatten2(t2,acc)))

Is flatten2 tail recursive?

flatten with accumulator
(* flatten2 : tree * int list -> int list

 REQUIRES: true

 ENSURES: flatten2(t, acc) ≅ flatten(t) @ acc
*)

fun flatten2 (Leaf(x), acc) = x :: acc

 | flatten2 (Node(t1,t2), acc) =

 flatten2(t1,(flatten2(t2,acc)))

fun flatten' (t: tree) : int list =

 flatten2(t,[])

Correctness of flatten2
Theorem: For all values T : tree and acc : int list,
 flatten2(t,acc) ≅ flatten(t)@ acc.

 PLEASE READ THE NOTES

+

4max

6 3

(Int.max(6,3)) + 4

Another kind of tree

+

4max

6 3

Oper(Oper(Val 6,Int.max,Val 3),

 (fn (x,y)=>x+y),

 Val 4)

Could also write op +

datatype optree = Op of optree * (int * int -> int) * optree

 | Val of int

Operator/operand tree

Operator/operand tree
datatype optree = Op of optree * (int * int -> int) * optree

 | Val of int

(* eval : optree -> int

 REQUIRES: all functions in T are total

 ENSURES: eval(T) reduces to the integer value that is the

 result of the computation

 described by T (assuming post-order traversal)

*)

fun eval(Val x : optree) : int = x

|eval(Op(l,f,r)) =

Operator/operand tree
datatype optree = Op of optree * (int * int -> int) * optree

 | Val of int

(* eval : optree -> int

 REQUIRES: all functions in T are total

 ENSURES: eval(T) reduces to the integer value that is the

 result of the computation

 described by T (assuming post-order traversal)

*)

fun eval(Val x : optree) : int = x

|eval(Op(l,f,r)) = f(eval l, eval r)

	Slide 1
	Slide 2: Today
	Slide 3: ANOTHER KIND OF TREE
	Slide 4: A new datatype for trees
	Slide 5: flatten
	Slide 6
	Slide 7: flatten
	Slide 8: flatten
	Slide 9: flatten
	Slide 10: flatten with accumulator
	Slide 11: flatten with accumulator
	Slide 12: flatten with accumulator
	Slide 13: flatten with accumulator
	Slide 14: flatten with accumulator
	Slide 15: flatten with accumulator
	Slide 16: flatten with accumulator
	Slide 17: Correctness of flatten2
	Slide 18
	Slide 19
	Slide 20: Operator/operand tree
	Slide 21: Operator/operand tree

