15-150
Fall 2025

Lecture 6

Data Types - Cost Analysis



Today

* More practice with lists and trees (Part 1)
* Asymptotic cost analysis using recurrences (Part 2)



ANOTHER KIND OF TREE



Anew datatype fortrees

datatype tree = Leaf of int | Node of tree * tree




flatten

datatype tree = Leaf of int | Node of tree * tree

(* flatten : tree -> int list
REQUIRES: true
ENSURES: flatten(t) returns a 1list of the leaf
values as they are encountered 1in the
inorder traversal of t

) (1,23




Appending lists

(* @ : int list * int list -> int list
REQUIRES: true
ENSURES: (@ (1,r) returns the list consisting of 1
followed by r
NOTE: this i1s also predefined in SML as the right-

associative infix operator Q.
*)

infixr (op @);

fun ([]:int 1list) @ (Y:int list)= Y
| (X::Xs) @ Y = x (xs @ Y)

val [1,2] = [] @ [1,2]

val [1,2,5,6] = [1,2] @ [5,6]

[1,2] € [3,4] @[5,6,7] means [1,2] @ ([3,4] @ [5,6,7])



flatten

datatype tree = Leaf of int | Node of tree * tree

(* flatten : tree -> int list
REQUIRES: true
ENSURES: flatten(t) returns a 1list of the leaf
values as they are encountered 1in the
inorder traversal of t

fun flatten (Leaf(x) : tree) : int list =
| flatten (Node(tl, t2)) =



flatten

datatype tree = Leaf of int | Node of tree * tree

(* flatten : tree -> int list
REQUIRES: true
ENSURES: flatten(t) returns a 1list of the leaf
values as they are encountered 1in the
inorder traversal of t

fun flatten (Leaf(x) : tree) : int list = [x]
| flatten (Node(tl, t2)) =



flatten

datatype tree = Leaf of int | Node of tree * tree

(* flatten : tree -> int list
REQUIRES: true
ENSURES: flatten(t) returns a 1list of the leaf
values as they are encountered 1in the
inorder traversal of t

fun flatten (Leaf(x) : tree) : int list = [x]
| flatten (Node(tl, t2)) = flatten (tl) @ flatten (t2)



flatten with accumulator

(*» flatten?2 : tree * 1int 1list-> 1int 1list
REQUIRES: true
ENSURES: ..

)



flatten with accumulator

(*» flatten?2 : tree * 1nt list -> 1nt list
REQUIRES: true
ENSURES: flatten2(t, acc) = flatten(t) @ acc

)



flatten with accumulator

(*» flatten?2 : tree * 1nt list -> 1nt list
REQUIRES: true
ENSURES: flatten2(t, acc) = flatten(t) @ acc

)

fun flatten? (Leaf(x), acc) =



flatten with accumulator

(*» flatten?2 : tree * 1nt list -> 1nt list
REQUIRES: true
ENSURES: flatten2(t, acc) = flatten(t) @ acc

)

fun flatten? (Leaf(x), acc) = x :: acc
| flatten2 ..



flatten with accumulator

(*» flatten?2 : tree * 1nt list -> 1nt list
REQUIRES: true
ENSURES: flatten2(t, acc) = flatten(t) @ acc

)

fun flatten? (Leaf(x), acc) = x :: acc
| flatten?2 (Node(tl,t2), acc)



flatten with accumulator

(*» flatten?2 : tree * 1nt list -> 1nt list
REQUIRES: true
ENSURES: flatten2(t, acc) = flatten(t) @ acc

)

fun flatten? (Leaf(x), acc) = x :: acc
| flatten?2 (Node(tl,t2), acc) =
flatten2 (tl, (flatten2 (t2,acc)))

Is f1latten? tail recursive?



flatten with accumulator

(*» flatten?2 : tree * 1nt list -> 1nt list
REQUIRES: true
ENSURES: flatten2(t, acc) = flatten(t) @ acc

)

fun flatten? (Leaf(x), acc) = X :: acc
| flatten?2 (Node(tl,t2), acc) =
flatten2 (tl, (flatten2 (t2,acc)))

fun flatten' (t: tree) : int list =
flatten2(t, [])



Correctnessof f1latten?

Theorem: ForallvaluesT : tree and acc : 1int list,
flatten2 (t,acc) = flatten(t)d acc.

PLEASE READ THE NOTES



Another kind of tree

(Int.max(6,3)) + 4




Operator/operand tree

datatype optree = Op of optree * (1nt * int -> int) * optree
| Val of int

Oper (Oper (Val 6,Int.max,Val 3),
(fn (x,y)=>x+y),
Val 4)

a Could also write op +




Operator/operand tree

datatype optree = Op of optree * (1nt * int -> int) * optree
| Val of int

(* eval : optree -> int
REQUIRES: all functions in T are total
ENSURES: eval (T) reduces to the integer value that is the
result of the computation
described by T (assuming post-order traversal)

fun eval (Val x : optree ) : int = x

leval (Op(l,£,r)) =



Operator/operand tree

datatype optree = Op of optree * (1nt * int -> int) * optree
| Val of int

(* eval : optree -> int
REQUIRES: all functions in T are total
ENSURES: eval (T) reduces to the integer value that is the
result of the computation
described by T (assuming post-order traversal)

fun eval (Val x : optree ) : int = x

leval (Op(l,f,r)) = f(eval 1, eval r)



	Slide 1
	Slide 2: Today
	Slide 3: ANOTHER KIND OF TREE
	Slide 4: A new datatype for trees
	Slide 5: flatten 
	Slide 6
	Slide 7: flatten 
	Slide 8: flatten 
	Slide 9: flatten 
	Slide 10: flatten with accumulator
	Slide 11: flatten with accumulator
	Slide 12: flatten with accumulator
	Slide 13: flatten with accumulator
	Slide 14: flatten with accumulator
	Slide 15: flatten with accumulator
	Slide 16: flatten with accumulator
	Slide 17: Correctness of flatten2
	Slide 18
	Slide 19
	Slide 20: Operator/operand tree
	Slide 21: Operator/operand tree

