$$
15-150
$$

Principles of Functional Programming

Slides for Lecture 6
Asymptotic Cost Analysis
February 1, 2024
Michael Erdmann

Asymptotic Cost Analysis

- Big-O complexity classes
- Recurrence Relations
- Work and Span
- Application: Sorting

Big-O Complexity Classes

Suppose $f(n)$ and $g(n)$ are positive-valued mathematical functions (with n a natural number).

We say that " $f(n)$ is $O(g(n))$ " if there exist N and c such that

$$
f(n) \leq c * g(n) \text { for all } n \geq N
$$

Big-O Complexity Classes

Suppose $f(n)$ and $g(n)$ are positive-valued mathematical functions (with n a natural number).

We say that " $f(n)$ is $O(g(n))$ " if there exist N and c such that

$$
f(n) \leq c * g(n) \text { for all } n \geq N .
$$

$n^{2}+n+3$ is $O\left(n^{2}\right)$ for instance.

$$
\begin{gathered}
\text { (use } \boldsymbol{N = 3} \text { and } \boldsymbol{c}=2 \text {) } \\
\text { (e.g., } 7^{2}+7+3 \leq 2 * 7^{2} \text {) }
\end{gathered}
$$

Big-O Complexity Classes

Suppose $f(n)$ and $g(n)$ are positive-valued mathematical functions (with n a natural number).

We say that " $f(n)$ is $O(g(n))$ " if there exist N and c such that

$$
f(n) \leq c * g(n) \text { for all } n \geq N
$$

$n^{2}+n+3$ is $O\left(n^{2}\right)$ for instance.
for this example also n^{2} is $O\left(n^{2}+n+3\right)$

Big-O Complexity Classes

Suppose $f(n)$ and $g(n)$ are positive-valued mathematical functions (with n a natural number).

We will let f measure work or span in terms of some size parameter n (sometimes tree depth d) and obtain complexity classes
$\mathrm{O}(1), \mathrm{O}(n), \mathrm{O}\left(n^{2}\right), \mathrm{O}\left(n^{3}\right), \ldots$,
$O(\log n), O(n \cdot \log n), O\left(2^{n}\right), \ldots$

Analyzing append and rev

(* op @ : int list * int list -> int list *)
infixr @
fun [] @ Y = Y
| (x: :xs) @ Y = x:: (xs @ Y)
(* rev : int list -> int list
REQUIRES: true
ENSURES: rev (L) returns a list consisting of L^{\prime} s elements in reverse order.
*)
fun rev [] = []
| rev (x: :xs) = (rev xs) @ [x]

Code for append:

fun [] @ $\mathbf{Y}=\mathbf{Y}$

| (x::Xs) @ Y = X:: (Xs @ Y)

Work analysis of append:
$\mathrm{W}_{\mathrm{C}}(\mathrm{n}, \mathrm{m})$ with n and m the sizes of the input lists.
Equation for base case:

$$
\mathrm{W}_{\mathrm{@}}(0, \mathrm{~m})=\mathrm{c}_{0} \text {, for some } \mathrm{c}_{0} \text {, all } \mathrm{m} .
$$

Equation for recursive clause, for $\mathrm{n}>0$:

$$
W_{@}(n, m)=c_{1}+W_{@}(n-1, m), \text { for some } c_{1}, \text { all } m
$$

Solving: $W_{@}(0, m)=C_{0}$

$$
W_{\mathbb{C}}(n, m)=c_{1}+W_{\Theta}(n-1, m)
$$

Unrolling:

$$
\mathrm{W}_{巴}(\mathrm{n}, \mathrm{~m})=\mathrm{c}_{1}+\overline{\mathrm{c}_{1}+\mathrm{W}_{巴}(\mathrm{n}-2, \mathrm{~m})}
$$

Solving: $W_{@}(0, m)=C_{0}$

$$
\mathrm{W}_{@}(\mathrm{n}, \mathrm{~m})=\mathrm{c}_{1}+\mathrm{W}_{@}(\mathrm{n}-1, \mathrm{~m})
$$

Unrolling:

$$
\begin{aligned}
W_{@}(n, m) & =c_{1}+c_{1}+W_{@}(n-2, m) \\
& =c_{1}+c_{1}+\frac{c_{1}+W_{@}(n-3, m)}{l}
\end{aligned}
$$

Solving: $W_{@}(0, m)=C_{0}$

$$
\mathrm{W}_{@}(\mathrm{n}, \mathrm{~m})=\mathrm{c}_{1}+\mathrm{W}_{@}(\mathrm{n}-1, \mathrm{~m})
$$

Unrolling:

$$
\begin{aligned}
\mathrm{W}_{@}(\mathrm{n}, \mathrm{~m}) & =\mathrm{c}_{1}+\mathrm{c}_{1}+\mathrm{W}_{@}(\mathrm{n}-2, \mathrm{~m}) \\
& =\mathrm{c}_{1}+\mathrm{c}_{1}+\mathrm{c}_{1}+\mathrm{W}_{@}(\mathrm{n}-3, \mathrm{~m}) \\
\ldots & =\mathrm{n} \cdot \mathrm{c}_{1}+\mathrm{c}_{0} \quad \text { (can prove this by induction) }
\end{aligned}
$$

So evaluation of (X @ Y) has $\mathrm{O}(\mathrm{n})$ work, with n the length of x .

Code for rev:

$$
\begin{aligned}
& \text { fun rev [] }=[] \\
& \text { | rev }(x:: x s)=(r e v \text { xs) @ [x] }
\end{aligned}
$$

Work analysis of rev:
$\mathrm{W}_{\mathrm{rev}}(\mathrm{n})$ with n the size of the input list.
Equation for base case:

$$
W_{\text {rev }}(0)=c_{0}, \text { for some } c_{0} .
$$

Equation for recursive clause, for $\mathrm{n}>0$:

$$
\begin{gathered}
W_{\text {rev }}(n)=c_{1}+W_{\text {rev }}(n-1)+W_{@}(n-1,1), \text { some } c_{1} . \\
W h y ?
\end{gathered}
$$

(use a little lemma that tells us)

For all list values L,

length (rev L) \cong length L

Code for rev:

$$
\begin{aligned}
& \text { fun rev }[]=[] \\
& \text { | rev }(x:: x s)=(r e v \text { xs }) \text { © }[x]
\end{aligned}
$$

Work analysis of rev:
$\mathrm{W}_{\mathrm{rev}}(\mathrm{n})$ with n the size of the input list.
Equation for base case:

$$
W_{\text {rev }}(0)=c_{0}, \text { for some } c_{0} .
$$

Equation for recursive clause, for $\mathrm{n}>0$:

$$
W_{r e v}(n)=c_{1}+W_{r e v}(n-1)+W_{@}(n-1,1), \text { some } c_{1} .
$$

So:

$$
W_{r e v}(n) \leq c_{1}+W_{r e v}(n-1)+c_{2}(n-1), \text { some } c_{2}
$$

Solving: $\mathrm{W}_{\mathrm{rev}}(0)=\mathrm{c}_{0}$

$$
W_{\text {rev }}(n) \leq c_{1}+W_{r e v}(n-1)+c_{2}(n-1)
$$

$$
W_{r e v}(n) \leq c_{1}+c_{2} \cdot n+W_{r e v}(n-1)
$$

Unrolling:

$$
W_{r e v}(n) \leq c_{1}+c_{2} \cdot n+\overline{\left\{c_{1}+c_{2}(n-1)+W_{r e v}(n-2)\right\}}
$$

Solving: $\mathrm{W}_{\text {rev }}(0)=\mathrm{c}_{0}$

$$
W_{\text {rev }}(n) \leq c_{1}+W_{r e v}(n-1)+c_{2}(n-1)
$$

$$
W_{r e v}(n) \leq c_{1}+c_{2} \cdot n+W_{r e v}(n-1)
$$

Unrolling:

$$
\begin{array}{r}
\mathrm{w}_{\mathrm{rev}}(\mathrm{n}) \leq \mathrm{c}_{1}+\mathrm{c}_{2} \cdot \mathrm{n}+\left\{\mathrm{c}_{1}+\mathrm{c}_{2}(\mathrm{n}-1)+\mathrm{W}_{\mathrm{rev}}(\mathrm{n}-2)\right\} \\
\leq \mathrm{c}_{1}+\mathrm{c}_{2} \cdot \mathrm{n}+\mathrm{c}_{1}+\mathrm{c}_{2}(\mathrm{n}-1) \\
+\overline{\left\{\mathrm{c}_{1}+\mathrm{c}_{2}(\mathrm{n}-2)+\mathrm{w}_{\mathrm{rev}}(\mathrm{n}-3)\right\}}
\end{array}
$$

Solving: $\mathrm{W}_{\text {rev }}(0)=\mathrm{c}_{0}$

$$
W_{\text {rev }}(n) \leq c_{1}+W_{r e v}(n-1)+c_{2}(n-1)
$$

$$
W_{r e v}(n) \leq c_{1}+c_{2} \cdot n+W_{r e v}(n-1)
$$

Unrolling:

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{rev}}(\mathrm{n}) \leq \mathrm{c}_{1}+\mathrm{c}_{2} \cdot \mathrm{n}+\left\{\mathrm{c}_{1}+\mathrm{c}_{2}(\mathrm{n}-1)+\mathrm{W}_{\mathrm{rev}}(\mathrm{n}-2)\right\} \\
& \leq \mathrm{c}_{1}+\mathrm{c}_{2} \cdot \mathrm{n}+\mathrm{c}_{1}+\mathrm{c}_{2}(\mathrm{n}-1) \\
&+\left\{\mathrm{c}_{1}+\mathrm{c}_{2}(\mathrm{n}-2)+\mathrm{W}_{\mathrm{rev}}(\mathrm{n}-3)\right\} \\
& \ldots \leq \mathrm{c}_{0}+\mathrm{n} \cdot \mathrm{c}_{1}+(\mathrm{n}(\mathrm{n}+1) / 2) \cdot \mathrm{c}_{2}
\end{aligned}
$$

Solving: $W_{r e v}(0)=c_{0}$

$$
W_{\text {rev }}(n) \leq c_{1}+W_{r e v}(n-1)+c_{2}(n-1)
$$

$$
W_{r e v}(n) \leq c_{1}+c_{2} \cdot n+W_{r e v}(n-1)
$$

Unrolling:

$$
\mathrm{W}_{\mathrm{rev}}(\mathrm{n}) \leq
$$

$$
\leq c_{0}+n \cdot c_{1}+(n(n+1) / 2) \cdot c_{2}
$$

So evaluation of rev (L) has $\mathrm{O}\left(\mathrm{n}^{2}\right)$ work, with n the length of L .

Analyzing trev

(* trev : int list * int list -> int list *)
fun trev ([], acc) = acc
| trev (x::xs, acc) $=$ trev(xs, $x:: a c c)$

Code for trev:

fun rev ([], acc) = acc
| trev (x: :xs, acc) $=$ trev(xs, $x:: a c c)$
Work analysis of tres:
$\mathrm{W}_{\text {trev }}(\mathrm{n}, \mathrm{m})$ with n and m the sizes of the input lists.
Equation for base case:

$$
\mathrm{W}_{\text {trev }}(0, \mathrm{~m})=\mathrm{c}_{0}, \text { for some } \mathrm{c}_{0}, \text { all } \mathrm{m}
$$

Equation for recursive clause, for $\mathrm{n}>0$:

$$
W_{\text {trev }}(n, m)=c_{1}+W_{\text {trev }}(n-1, m+1), \text { some } c_{1}, \text { all } m .
$$

Unrolling:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{trev}}(\mathrm{n}, \mathrm{~m}) & =\mathrm{c}_{1}+\mathrm{c}_{1}+\mathrm{W}_{\text {trev }}(\mathrm{n}-2, \mathrm{~m}+2) \\
\ldots & =\mathrm{n} \cdot \mathrm{c}_{1}+\mathrm{c}_{0}, \text { which is } \mathrm{O}(\mathrm{n}) .
\end{aligned}
$$

Analyzing tree summation

$\begin{aligned} \text { datatype tree }= & \text { Empty } \\ & \mid \text { Node of tree * int * tree }\end{aligned}$
(* sum : tree -> int *)
REQUIRES: true
ENSURES: sum(T) adds all integers in T.
*)
fun sum (Empty : tree) : int $=0$
$\mid \operatorname{sum}(\operatorname{Node}(\ell, x, r))=(\operatorname{sum} \ell)+(\operatorname{sum} r)+x$

Code for sum:

fun sum Empty $=0$
| sum $(\operatorname{Node}(\ell, \mathbf{x}, r))=(\operatorname{sum} \ell)+(\operatorname{sum} r)+x$
Work analysis of sum:
$\mathrm{W}_{\text {sum }}(\mathrm{n})$ with n the number of nodes in the tree.
Equation for base case:
$\mathrm{W}_{\text {sum }}(0)=\mathrm{c}_{0}$, for some c_{0}.
Equation for recursive clause, for $\mathrm{n}>0$:
$\mathrm{W}_{\text {sum }}(\mathrm{n})=\mathrm{c}_{1}+\mathrm{W}_{\text {sum }}\left(\mathrm{n}_{\ell}\right)+\mathrm{W}_{\text {sum }}\left(\mathrm{n}_{\mathrm{r}}\right)$, some c_{1},
with now n_{ℓ} the number of nodes in the left subtree and n_{r} the number of nodes in the right subtree.

Solving: $\quad W_{\text {sum }}(0)=c_{0}$

$$
\mathrm{W}_{\text {sum }}(\mathrm{n})=\mathrm{c}_{1}+\mathrm{W}_{\text {sum }}\left(\mathrm{n}_{\ell}\right)+\mathrm{W}_{\text {sum }}\left(\mathrm{n}_{\mathrm{r}}\right)
$$

Tree Method: (write down work that occurs at each node/leaf)

Note: Tree need not be balanced.

$$
\mathrm{W}_{\text {sum }}(\mathrm{n})=\mathrm{c}_{1} \mathrm{n}+\mathrm{c}_{0}(\mathrm{n}+1)
$$

Fact: A binary tree has n nodes iff it has $n+1$ leaves.
So evaluation of sum (T) has $\mathrm{O}(\mathrm{n})$ work. (can also prove this by induction)

Side remark for the curious student

The fact that a binary tree has n nodes iff it has $\mathrm{n}+1$ leaves is a special instance of the Euler Characteristic.

A slightly more general instance:

In an undirected graph:
\#vertices - \#edges = \#components - \#cycles

Code for sum:

fun sum Empty $=0$
| sum (Node $(\ell, \mathbf{x}, \mathbf{r}))=(\operatorname{sum} \ell)+(\operatorname{sum} r)+\mathbf{x}$

Is there any opportunity for parallelism?

YES: The recursive calls to sum can occur in parallel.

Code for sum:

fun sum Empty $=0$
| sum (Node $(\ell, \mathbf{x}, r))=(\operatorname{sum} \ell)+(\operatorname{sum} r)+x$

Span analysis of sum:

$S_{\text {sum }}(\mathrm{n})$ with n the number of nodes in the tree.
Equation for base case:
$S_{\text {sum }}(0)=C_{0}$, for some C_{0}.
Equation for recursive clause, for $\mathrm{n}>0$:
$S_{\text {sum }}(n)=c_{1}+\max \left\{S_{\text {sum }}\left(n_{\ell}\right), S_{\text {sum }}\left(n_{r}\right)\right\}$, some c_{1}.
Notice how max replaces + in the cost analysis.

Solving: $S_{\text {sum }}(0)=c_{0}$

$$
S_{\text {sum }}(n)=c_{1}+\max \left\{S_{\text {sum }}\left(n_{\ell}\right), S_{\text {sum }}\left(n_{r}\right)\right\}
$$

ALAS! It could be that $\mathrm{n}_{\ell}=\mathrm{n}-1$ and $\mathrm{n}_{\mathrm{r}}=0$.
Then the recursive equation becomes:

$$
S_{\mathrm{sum}}(n)=c_{1}+S_{\text {sum }}(n-1)
$$

Therefore $S_{\text {sum }}(n)$ is $O(n)$, meaning we haven't gained anything from parallel evaluation.

Suppose however that the tree is balanced.

(This means that roughly half the remaining nodes appear in each subtree as one descends the tree.)

Then: $\mathrm{S}_{\text {sum }}(0)=\mathrm{c}_{0}$

$$
S_{\text {sum }}(n) \approx c_{1}+\max \left\{S_{\text {sum }}(n / 2), S_{\text {sum }}(n / 2)\right\}
$$

Suppose however that the tree is balanced.
(This means that roughly half the remaining nodes appear in each subtree as one descends the tree.)

Then: $S_{\text {sum }}(0)=c_{0}$

$$
S_{\text {sum }}(n)=c_{1}+\max \left\{S_{\text {sum }}(n / 2), S_{\text {sum }}(n / 2)\right\}
$$

So

$$
\begin{aligned}
S_{\mathrm{sum}}(n)= & c_{1}+S_{\mathrm{sum}}(n / 2) \\
= & c_{1}+c_{1}+S_{\mathrm{sum}}(n / 4) \\
\cdots & =\frac{c_{1}+c_{1}+\cdots+c_{1}}{\left(\left\lfloor\log _{2} n\right\rfloor+1\right) \text { many times }}
\end{aligned}
$$

Now $S_{\text {sum }}(n)$ is $O(\log (n))$, meaning parallelism is significant.

We could also have obtained this result by expressing span as $\mathbf{S}_{\text {sum }}(\mathbf{d})$, with \mathbf{d} the depth of the tree.

Then: $S_{\text {sum }}(0)=c_{0}$

$$
S_{\text {sum }}(d)=c_{1}+\max \left\{S_{\text {sum }}(d-1), S_{\text {sum }}\left(d^{\prime}\right)\right\}
$$

Note: $d^{\prime}<d$

We could also have obtained this result by expressing span as $\mathbf{S}_{\text {sum }}(\mathbf{d})$, with \mathbf{d} the depth of the tree.

Then: $S_{\text {sum }}(0)=c_{0}$

$$
S_{\text {sum }}(d)=c_{1}+\max \left\{S_{\text {sum }}(d-1), S_{\text {sum }}\left(d^{\prime}\right)\right\}
$$

So $\quad S_{\text {sum }}(d)=c_{1}+S_{\text {sum }}(d-1)$
Thus $S_{\text {sum }}(d)$ is $O(d)$.
This result holds for all trees. ($\mathrm{d}=\mathrm{n}$ is possible) For balanced trees, d is $O(\log (n))$, and we again see that parallelism helps.

Tree Method for balanced trees:

This tree is perfectly balanced.
We use it as a model for balanced trees more generally.

Tree Method for balanced trees:

Definition: A binary tree is balanced if it is either
(i) Empty
or (ii) a Node whose two subtrees are balanced with depths differing by at most $\mathbf{1}$.

This tree is perfectly balanced.
We use it as a model for balanced trees more generally.

Tree Method for balanced trees:

More generally: A binary tree is balanced if it is either

(i) Empty

or (ii) a Node whose two subtrees are balanced with depths differing by at most a constant \mathbf{c}.

This tree is perfectly balanced.
We use it as a model for balanced trees more generally.

Tree Method for balanced trees:

Another definition (consequence of previous defs):
A binary tree is balanced if its depth \mathbf{d} is roughly $\boldsymbol{\operatorname { l o g }}(\mathbf{n})$, with \mathbf{n} the number of nodes in the tree.

This tree is perfectly balanced.
We use it as a model for balanced trees more generally.

Tree Method for balanced trees:

$W(n)=c_{1}\left(1+2+\cdots+2^{d-1}\right)+c_{0} 2^{d} \leq c 2^{d+1}$, so $O(n)$.

$$
\left(c=\max \left(c_{1}, c_{0}\right)\right)
$$

Tree Method for balanced trees:

$W(n)=c_{1}\left(1+2+\cdots+2^{d-1}\right)+c_{0} 2^{d} \leq c 2^{d+1}$, so $O(n)$.
$S(n)=$

$$
\left(c=\max \left(c_{1}, c_{0}\right)\right)
$$

Tree Method for balanced trees:

$W(n)=c_{1}\left(1+2+\cdots+2^{d-1}\right)+c_{0} 2^{d} \leq c 2^{d+1}$, so $O(n)$. $S(n)=c_{1}(1+1+\cdots+1)+c_{0} \leq c(d+1)$, so $O(\log (n))$.

$$
\left(c=\max \left(c_{1}, c_{0}\right)\right)
$$

Sorting

datatype order = LESS | EQUAL | GREATER

Int.compare : int * int -> order
String.compare : string * string -> order

More generally, for some type t may have
compare : t * t -> order

Sorting

datatype order = LESS | EQUAL | GREATER

For lists:

L is sorted iff compare $(x, y) \Longrightarrow$ LESS or EQUAL whenever x appears to the left of y in L.

$$
\left[\ldots, X, \ldots{ }^{\text {LESS } \mid E Q U A L} \ldots, Y, \ldots\right]
$$

insertion sort for lists

(* ins : int * int list -> int list
REQUIRES: L is sorted
ENSURES: ins (x,L) ==> a sorted permutation of $x:$:L
*)
fun ins $(x,[])=[x]$
| ins (x, y::ys) $=$ (case compare (x, y) of GREATER => y ::ins ($x, y s)$
| _ => x::y::ys)
(Remember our definition of a sorted list:

$$
\left.\left[\ldots, \mathbf{X}, \ldots{ }^{\text {LESS | EQUAL }} \ldots, Y, \ldots\right]\right)
$$

insertion sort for lists

(* ins : int * int list -> int list
REQUIRES: L is sorted
ENSURES: ins $(x, L)==>$ a sorted permutation of $x:$:L
*)
fun ins ($x,[]$) $=$ [x]
| ins ($x, y:: y s)=$ (case compare (x, y) of GREATER => y ::ins ($x, y s)$
| _ => x::y::ys)
(* isort : int list -> int list
REQUIRES: true
ENSURES: isort(L) ==> a sorted permutation of L
*)
fun isort [] = []
| isort (x: :xs) = ins (x, isort xs)

Code for ins:

$$
\begin{aligned}
& \text { fun ins (} x, \text { []) }=\text { [} x] \\
& \text { lins (x, y:ys) = (case compare (x, y) of } \\
& \text { GREATER => y::ins(x, ys) } \\
& \text { l _ => x::y::ys) }
\end{aligned}
$$

Work:
$\mathrm{W}_{\text {ins }}(\mathrm{n})$ with n the list length.

Equations:
$W_{\text {ins }}(0)=C_{0}$
$W_{\text {ins }}(n)=c_{1}+W_{\text {ins }}(n-1)$, for first case clause $W_{\text {ins }}(n)=C_{2}$, for second case clause

$$
\text { Consequently, } \mathrm{W}_{\mathrm{ins}}(\mathrm{n}) \text { is } \mathrm{O}(\mathrm{n}) .
$$

Also, observe: no opportunity for parallel speedup.

Code for isort:

> fun isort []$=[]$ $\quad \mid$ isort $(x:: x s)=$ ins (x, isort $x s)$

Work:
$\mathrm{W}_{\text {isort }}(\mathrm{n})$ with n the list length.
Equations:

$$
\begin{aligned}
& W_{\text {isort }}(0)=c_{0} \\
& W_{\text {isort }}(n)=c_{1}+W_{i \text { sort }}(n-1)+W_{\text {ins }}(n-1)
\end{aligned}
$$

So: $W_{\text {isort }}(n) \leq c_{1}+c_{2} \cdot n+W_{\text {isort }}(n-1)$
(that should remind you of the recurrence for rev) Consequently, $\mathbf{W}_{\text {isort }}(\mathrm{n})$ is $\mathbf{O (n ^ { 2 })}$. Again, no opportunity for parallel speedup.

Sorting

list isort		
Work list merge sort tree merge sort $O\left(n^{2}\right)$ $O(n \cdot \log n)$ $O(n \cdot \log n)$ $O\left(n^{2}\right)$ $O(n)$ $O\left((\log n)^{3}\right)$ $O\left((\log n)^{2}\right)$		
(next week) (next week) (in 15-210)		

That is all.

Please have a good weekend.

See you Tuesday.

