15-150
Principles of Functional Programming

Lecture 3
January 20, 2026

Michael Erdmann

Recursion & Induction

Standard
Strong
Structural

(¢ square 3 int = int
REQUIRES: true
ENSVRES s Sq.uwe(n) s n

*)
'cMV\ Sihdfe (V\ 4 ‘m‘t) 4 '"\'t = NYN

Sgquare s bound +o a Punchion value.
square : int—7 int
“has type”
S?uare + is an express jon.
square 7 : mt

square ¥ —> 97,
? « evaluates 4o’

49 : int

49 is a valke (values arealso expressfons)

g

1l sometmes a bbreviate reductions

TInstead of

Sguare 7

‘% [env when Sguare was cle-‘-’?nea”
(fn (niintd = nan) 7

= [eav..]1[#/n] nan
= [env.]L¥/m] #*n
= [env.-.][7/n_] 7P
= 49

I MGJ Sus‘" WY’H'Q

Sq, uavre '77

= 77
= 49

e

I sometimes abbreviate reductions

Instead of

53 uare 7

é [env when Sgum‘e was AQ'PMOJI
(4n Cniint) =D Nan) 7

= [env..]1[#/n] nan
= [env.] [¥/m] 72N
= [env.-.][wnl Fxf
= 49

Ov even Sus'f‘
3?,V\are 7
= 49

C* POwev‘ ® l‘\ﬂ.'t l\v\'t —3-.‘.1‘&
REQUIRES : K20

ENSURES : power (n, k) ek
(lets defime 0°=1)
*)

'¥uV\ POUDQT (n:iv\i,o.“mi): wt = ,
\ poWRY C“,k) = N+ wa(w,k-n)

A
..
=
"
y O
i‘m&'v .
er o
w
TH
-
(# j

k
! 1)
i
l-rj c
s
D
| le
B (
R
SV
N
E
0

P —— ,
'g 0 \ t
\V\
'ih{):
i to.
r l(®
‘De 14|
V.V\

(n.k'-D
er

;-
14}

v (k)

oWl

| P

(,* PoweV‘ % Wt * vt — Wi
REQUIRES «: K210

ENSUR ES power (n, h-) e uk
(lets define O°=1)
)

‘?un POHDQT (nﬁv\t,o:‘m‘t): wt = ,
‘ power C“)k) - N+ Pwer(\n,k-b

3! = 3.3.3-3:3:3'31

-

137

0(k) recursive calls

en ¢ WMt — besl
ev ")
(* REQUIRES ¢ tru

even K evaluates to
ES ¢
EN SR

's even;
€ Kkive
;‘;‘ Ts:) |\‘¢ k s edd.
Biy=y

x)

a\ -

tint) ¢ bo

'cun even (k.) -
(k wmod Q)

pr:uié Pualiation of €. Heu.else.

o it e then €, else €y ¢ £

T €) & beel,
€2 t,
£ €3¢,

(2w pcf"l'fm 'aur) €, % & must hape
He same type.)

* Evalyhen s left -+o - W‘J b,

€, s evaluateld € €| hrue,
€y s evelualed € @, Lalse

C* POW@Y‘ s WME * Wt —3 Wt
RE@uZRES : K20

ENSURES i power (n, k) epnkF
(lets defime 0°=1)
*)

'pun Pawer(n:?n-é,O::d):th = |
| power (n, k) =
& (even kD

then sguare (power (0, kdva)
else n#* pawer(v\, k=1

(:* POW@Y‘ s Wt * Mt — Wt
RE@uzRES : K20

ENSURES i pewer (n, k) <k
(lets define O°=1)
X)

pDV\ Pawer(n:?n-f,O::d):En'l: =

| power (n, k) =
£ (even k)

then sSguare (fower (m, kdva))
else n # power (n, k-1

3¥=3-(3-(3-1)°
= UsF

_ O(‘oﬁ k) recursive calls

We uwu\c& ke to que
Correctmess {or each ;‘MPlQmeu”‘ru'IL}a,;

Theore mi

For al] values n:int 4 kﬂwl)
with k20, power(nk)e—n"

During lecture:

We proved the theorem for our two
Implementations of power.

We used standard mathematical induction
for the first implementation and
strong induction for the second implementation.

Lists
Tgfe t list for av bpe £ .

Va’ues [V') ") Vn], with Gach Vo value 0-94‘7?94
8 n20, (By n=0 we meau%eemp?
list, weitten LT or ni) D>

Expessions « All e vehoes, 3
resses i @3t ¢ eszt /"sf,
er@kam})/e 1::12)3] which gives e Iisd
11,2,3] 8 int st

_S Ma [l com me\‘\-t

10 4 (13,3
av'e s:mpla twe diderent Ways ot
wﬁﬁua He same 'ﬂmay (Scme. ligt wJue)
Heve is another way : 1::2:3un0),

L 4
4

e 1S ria\a‘t -associative,

So
1 :0Q::3:: rest

Mmeéans

1 :: (3 ¥ (3:’:res'l:)).

o Q2205 ¢ T list
€ ettt and es st lst

B

E Va’ua“‘r‘an

- [] S @ velue roneuw ", \n
(same as nil) (P ounced vi))

* QR:3es = e'sses
Mt e=e’

v VSies = Vveees’

¥ V is a value
¢ €s=es’

(I.e.) le*("}--'f-a"--\rv‘jh?L evaluahion
Yor sequgntial evaluation.)

Can use list structure as
patterns, with variables binding

to different parts of the list.

During lecture:

We wrote a Iength function for lists.

We proved that Iength is total
We used structural induction for the proof.

Corre spon«lence

Dq“as'h uc“’“t"e COAQ Pfoo'P

bose case(s) base case(s) base case(s)

‘lm\uc'\"we / vecursive réc urs‘\ve ‘md uc+i0v~.
C\an\'}ion (5) c!ause(s) s+e F(S)

Corre spomlence

Dq‘\a s"\'\‘ uc‘}wr& COC\Q. PTOO'F

bose case(s) base case(s) base cose(s)
O fun _pwer(-p)_z_ 1 power (no) 1

—_—

R

nductwe / récursive recursve hCl w C'h on
c\e%“han (5) C !a.use(s) ste F(S)
(e-1)+ 1 | powertn,kd=n« yowef(“,k-\)

TH: power(nk) e nk
NTS: power (n,k#)e=n™!

Corre spomlence

Dq‘\as'*\’ uc’}we. COAQ PTOO'F

bose case(s) base case(s) base cose(s)

T ST
defimtion (s) cla.use(s) case(s)
X2 XS 1+ /eng"'h(xs) TH: /ena-ih&;) ey

NTS /ehafh [xe:x9) ey’

C_orre Spomlence

DQ'\Q s'h’ uc‘}hr& Coc\e Pwo‘F

base case(s) base case(s) base case(s)

[] O lenath [1 <50
\nc\uc'\:tv‘Q/recuVs‘nve recursive induckive
defimtion (s) clause(s) case(s)
XS 1+ /e'\g“'b\s) TH: /engﬂt&s) v

NTS /ehg'ﬂ\ [xe:x9) v’

Tl’le.re. mqa be Several

bqse, cases qncl /o!“ seveml

inductive cases,

Tl\q‘é 'S a//.
Have a 3004

	Title.pdf
	15-150Principles of Functional Programming

	Title.pdf
	15-150Principles of Functional Programming

	Title.pdf
	15-150Principles of Functional Programming

