

15-150

Principles of Functional Programming

Lecture 3

January 20, 2026

Michael Erdmann

Recursion & Induction

Standard
Strong
Structural

(* square : int → int

REQUIRES: true

ENSURES: square(n) \Rightarrow n^2

*)

fun square (n: int): int = n*n

square is bound to a function value.

square : int → int

“has type”

square 7 is an expression.

square 7 : int

square 7 $\xrightarrow{\text{evaluates to}}$ 49

49 : int

49 is a value (values are also expressions)

I sometimes abbreviate reductions

Instead of

square 7

\Rightarrow [env when square was defined]

(fn (n:int) \Rightarrow n*n) 7

\Rightarrow [env...] [7/n] n*n

\Rightarrow [env...] [7/n] 7*n

\Rightarrow [env...] [7/n] 7*7

\Rightarrow 49

I may just write

square 7

\Rightarrow 7*7

\Rightarrow 49

I sometimes abbreviate reductions

Instead of

square 7

\Rightarrow [env when square was defined]

$(fn\ (n:int)\ \Rightarrow\ n*n)\ 7$

\Rightarrow [env...][7/n] n*n

\Rightarrow [env...][7/n] 7*n

\Rightarrow [env...][7/n] 7*7

\Rightarrow 49

Or even just

square 7

\Rightarrow 49

(* power : int * int \rightarrow int

REQUIRES : $k \geq 0$

ENSURES : $\text{power}(n, k) \hookrightarrow n^k$
(let's define $0^0 = 1$)

*)

fun power(n:int, 0:int): int = 1

| power(n, k) = n * power(n, k-1)

(* power : int * int \rightarrow int

REQUIRES : $k \geq 0$

ENSURES : $\text{power}(n, k) \hookrightarrow n^k$

(let's define $0^0 = 1$)

*)

fun power (_ : int, 0 : int) : int = 1

| power (n, k) = n * power(n, k-1)

(* power : int * int → int

REQUIRES : $k \geq 0$

ENSURES : $\text{power}(n, k) \hookrightarrow n^k$

(let's define $0^0 = 1$)

*)

fun power(n:int, 0:int): int = 1

| power(n, k) = n * power(n, k-1)

$$3^7 = 3 \cdot 1$$

$$= 2187$$

$O(k)$ recursive calls

(* even : int → bool

REQUIRES : true

ENSURES : even k evaluates to
{ true, if k is even;
false, if k is odd.

*)

fun even (k :int) : bool =

$(k \bmod 2) = 0$

Typing & Evaluation of if...then...else.

- $\text{if } e_1 \text{, then } e_2 \text{ else } e_3 : t$
if $e_1 : \text{bool}$,
 $e_2 : t$,
& $e_3 : t$.

(In particular, e_2 & e_3 must have the same type.)

- Evaluation is left-to-right.
 e_2 is evaluated iff $e_1 \hookrightarrow \text{true}$.
 e_3 is evaluated iff $e_1 \hookrightarrow \text{false}$.

(* power : int * int \rightarrow int

REQUIRES : $k \geq 0$

ENSURES : $\text{power}(n, k) \hookrightarrow n^k$
(let's define $0^0 = 1$)

*)

fun power(n:int, 0:int):int = 1
| power(n, k) =
 if (even k)
 then square(power(n, k div 2))
 else n * power(n, k - 1)

(* power : int * int → int

REQUIRES : $k \geq 0$

ENSURES : $\text{power}(n, k) \hookrightarrow n^k$

(let's define $0^0 = 1$)

*)

fun power(n:int, 0:int):int = 1

| power(n, k) =

 if (even k)

 then square(power(n, k div 2))

 else n * power(n, k - 1)

$$3^7 = 3 \cdot (3 \cdot (3 \cdot 1)^2)^2$$

$$= 2187$$

O(log k) recursive calls

We would like to prove correctness for each implementation:

Theorem

For all values $n:\text{int} \& k:\text{int}$,
with $k \geq 0$, $\text{power}(n,k) \leftarrow n^k$.

During lecture:

We proved the theorem for our two implementations of **power**.

We used standard mathematical induction for the first implementation and strong induction for the second implementation.

Lists

Type t list for any type t .

Values $[v_1, \dots, v_n]$, with each v_i a value of type t , & $n \geq 0$. (By $n=0$ we mean the empty list, written $[]$ or nil .)

Expressions

- All the values, &
- $e :: es$, with $e : t$ & $es : t$ list.

For example $1 :: [2, 3]$ which gives the list
 $[1, 2, 3] : \text{int list}$

Small comment

$1 :: [2, 3]$ & $[1, 2, 3]$

are simply two different ways of writing the same thing (same list value).

Here is another way: $1 :: 2 :: 3 :: \text{nil}$.

:: is right-associative.

So

1 :: 2 :: 3 :: rest

means

1 :: (2 :: (3 :: rest)).

Type-checking

- $[] : t \text{ list}$
- $e :: es : t \text{ list}$
if $e : t$ and $es : t \text{ list}$

Evaluation

- $[]$ is a value (pronounced "nil")
(same as nil)
- $e :: es \Rightarrow e' :: es$
if $e \Rightarrow e'$
- $v :: es \Rightarrow v :: es'$
if v is a value
& $es \Rightarrow es'$.

(I.e., left-to-right evaluation
for sequential evaluation.)

Can use list structure as
patterns, with variables binding
to different parts of the list.

During lecture:

We wrote a **length** function for lists.

We proved that **length** is total

We used *structural induction* for the proof.

Correspondence

Datastructure	Code	Proof
base case(s)	base case(s)	base case(s)
inductive/recursive definition(s)	recursive clause(s)	induction step(s)

Correspondence

Datastructure

Code

Proof

base case(s)

base case(s)

base case(s)

0

fun power(-,0)=1

power(n,0) \hookrightarrow 1

inductive/recursive
definition(s)

$(k-1)+1$

recursive
clause(s)

| power(n,k)=n*power(n,k-1)

induction
step(s)

IH: power(n,k) $\hookrightarrow n^k$
NTS: power(n,k+1) $\hookrightarrow n^{k+1}$

Correspondence

Datastructure	Code	Proof
base case(s)	base case(s)	base case(s)
$[]$	\emptyset	$\text{length} [] \hookrightarrow 0$
inductive/recursive definition(s)	recursive clause(s)	inductive case(s)
$x :: xs$	$1 + \text{length}(xs)$	$\text{IH: } \text{length}(xs) \hookrightarrow v$ $\text{NTS: } \text{length}(x :: xs) \hookrightarrow v'$

Correspondence

Datastructure	Code	Proof
base case(s)	base case(s)	base case(s)
$[]$	\emptyset	$\text{length} [] \hookrightarrow 0$
inductive/recursive definition(s)	recursive clause(s)	inductive case(s)
$x :: xs$	$1 + \text{length}(xs)$	$\text{IH: } \text{length}(xs) \hookrightarrow v$ $\text{NTS: } \text{length}(x :: xs) \hookrightarrow v'$

There may be several base cases and /or several inductive cases.

That is all.

Have a good

Wednesday!