15-150

Principles of Functional Programming

Slides for Lecture 2
Functions (continued)

January 15, 2026
Michael Erdmann

L essons:

* Recall: Declarations, Bindings, Closures
* Function Application

* Recursion

* Patterns

 Functions as first-class values

 Some comments about = and totality

(Recall from last time:)

Declarations
and
Bindings

Recall: Declarations & Bindings

Here Is one declaration:
val pi : real = 3.14159

Binding (behind the scenes in the environment):

3.14159 /p¢ |

Recall: Declarations & Bindings

Here are two declarations:
val pi : real = 3.14159

fun area (r:real) : real = pi*r*r

Bindings (behind the scenes in the environment):

Recall: Declarations & Bindings

Here are two declarations:
val pi : real = 3.14159

fun area (r:real) : real = pi*r*r

Bindings (behinc

2.1415°

the scenes In the environment):

/Pi] lambda expression

—

‘Pv\ (r‘.fea\\ p— PLX rx vy

EV\V:TOV\W\QV\{ COV\SFS'hng O'Pa.” Qrea

\ biv\c(c'njs wlqen aréa was JeJarﬁao

Function
Application

Function Application

What does SML do with this expression?

area (2.1 + 1.9)

Let's look at the more general case first:
e2 el

(Then we will come back to the specific expression.)

(1) Typecheck e2 el

Typechecking Rules e2 el

e (fn (x:t;) => body) : t;, > t,
If body : t, assuming =x:t,.

Typechecking Rules e2 el

e (fn (x:t;) => body) : t;, > t,
If body : t, assuming =x:t,.

The type of x matters!

For instance, If body IS x + 9,
then body only has a well-defined
type If x : int.

Typechecking Rules e2 el

e (fn (x:t;) => body) : t;, > t,
If body : t, assuming =x:t,.

(fn (x:1nt) => x) : 22?2727

(fn (x:real) => x): 22?2727

Typechecking Rules e2 el

e (fn (x:t;) => body) : t;, > t,
If body : t, assuming =x:t,.

(fn (x:int) => x) : int -> int

(fn (x:real) => x): real -> real

Typechecking Rules e2 el

e (fn (x:t;) => body) : t;, > t,
If body : t, assuming =x:t,.

e e2 el : t,

If e2 : t; -> t,
and el : t,.

(1) Typecheck area (2.1 +1.9)

e area : real -> real

aréa

Why?

Because area Is the lambda expression

fn (r:real) => pi*r*r

and pi*r*r : real
given that pi:real (by Its declaration)
and r:real (by type annotation).

(1) Typecheck area (2.1 +1.9)

e area : real -> real

e (2.1 + 1.9) : real

Why?
Because 2.1 : real
and 1.9 : real

and the symbol + here represents

the addition function with type
real * real -> real.

(1) Typecheck area (2.1 +1.9)

e area : real -> real

e (2.1 + 1.9) : real

e SO area (2.1 + 1.9) : real

In particular, the expression is well-typed.

REMEMBER:

SML will only evaluate an expression
If the expression is well-typed.

@ Evaluate e2 el

Evaluation Rules: e2 el

(1) Reduce e2 to a (function) value.

Recall: This is a closure containing a lambda expression
(En (x:t) => body) and an environment enwv consisting

of the bindings present when the function was defined.

(2) Reduce el to avalue v.

(3) Extend enwv with the binding [v/x].

(4) Evaluate body In this extended environment.

Step (2) occurs only if step (1) produces a value.
Steps (3) and (4) occur only if steps (1) and (2) produce values.
Step (4) may or may not produce a value.

Evaluation Rules: e2 el

(1) Reduce e2 to a (function) value.

Recall: This is a closure containing a lambda expression
(En (x:t) => body) and an environment enwv consisting

of the bindings present when the function was defined.

(2) Reduce el to avalue v.

(3) Extend enwv with the binding [v/x].

(4) Evaluate body In this extended environment.

If evaluation of body produces a value w,
return w in the original calling environment.

(2) Evaluate area (2.1 +1.9)

area (2.1 + 1.9)

— [3.14159/pi]
(fn (r:real) => pi*r*r) (2.1 +1.9)

—> [3.14159/pi] (fn (r:real) => pi*r*r) 4.0
—> [3.14159/pi][4.0/xr] pi*r*r

—> 50.26544

(Often we leave off the environments when we
write reductions, but | wrote them here to be explicit.)

Evaluation Summary

val pi : real = 3.14159
fun area (r:real) : real = pi*r*r

area (2.1 + 1.9) <— 50.26544

Evaluation Summary & Question

val pi : real =

fun area (r:real) : real = pi*r*r

area (2.1 + 1.9) <— 50.26544

val pi : real =

Evaluation Summary & Question

val pi : real = 3.14159
fun area (r:real) : real = pi*r*r

area (2.1 + 1.9) <— 50.26544

val pi : real = 0.0

Evaluation Summary & Question

val pi : real = 3.14159
fun area (r:real) : real = pi*r*r

area (2.1 + 1.9) <— 50.26544

val pi : real = 0.0

Answer: Same as before, 50.26544.

Why?

Evaluation Summary & Question

val pi : real = 3.14159
fun area (r:real) : real = pi*r*r

area (2.1 + 1.9) <— 50.26544

val pi : real = 0.0

Answer: Same as before, 50.26544.

Why? Because when area Is defined,
pi Is boundto 3.14159.

Recursion

A math text might define the factorial function by:
fact(0) = 1,
fact(n) = n*(fact(n-1)), for all n > 0.

(And then write n! as mathematical shorthand for fact(n).)

A math text might define the factorial function by:
fact(0) = 1,
fact(n) = n*(fact(n-1)), for all n > 0.

(And then write n! as mathematical shorthand for fact(n).)

That math definition becomes SML code like this:

(* fact : int -> int
REQUIRES: n >= 0
ENSURES: fact(n) ==> n!
*)
fun fact(0:int):int =1
| fact(n:int) :int n* (fact(n-1))

A math text might define the factorial function by:

fact(0) = 1,
fact(n) = n*(fact(n-1)), for all n > 0.

(And then write n! as mathematical shorthand for fact(n).)

That math definition becomes SML code like this:

© ® @O

* fact : int -> int
REQUIRES: n >= 0
ENSURES: fact(n) ==> n!
*)
fun fact(0:int):int =1
| fact(n:int) :int n* (fact(n-1))

val 1 = fact O
val 720 = fact 6

Patterns

Function Clauses & Pattern Matching

fun fact(0:int):int =1
| fact(n:int) :int = n*(fact(n-1))
There are two function clauses in this code.

The first clause starts with keyword fun.
The second clause starts with the “or bar” | .

After that, each clause is of the form
fact pattern = expression

When SML evaluates an expression of the form fact (value), SML tries
to match value against each pattern (in sequential order).

If a pattern match succeeds, SML creates variable bindings whenever the
pattern includes variables, then evaluates the corresponding expression.

 For fact (0), 0 matches the first pattern and SML evaluates 1.

For fact (3), 3 matches the second pattern and SML creates binding
[3/n], which then is in scope for evaluation of n* (fact (n-1)).

General Form

fun £ pl = el
| £ p2 = e2
| £ pk = ek

Each pj is a pattern and each ej is an expression.

NOTE:

f £ : £t -> t’,then

each pattern pj must match type t,

and each expression ej must have type t’,
given the types of any variables in pJj.

General Form

fun £ pl = el
| £ p2 = e2

| £ pk = ek

Each pj is a pattern and each ej is an expression.

When evaluating £ (v) for some value v, SML will try to match v
against p1, then p2, etc., until a match p5j succeeds (including
any variable bindings needed), at which point SML evaluates ej.

If no pattern matches v, evaluation will result in a fatal runtime
error. For this reason, the set of patterns {p3j} should cover all
possibilities. SML will give a “nonexhaustive” warning if that is
not the case when £ is declared. SML will also raise a fatal error
when £ is declared if there are redundant (i.e., extra) patterns.

What Is a pattern?

For now, a pattern can be any of the following:
e aconstant (e.g., 3, true, "abec"; no reals)

e a variable

« atuple of subpatterns
 the wildcard _ (which matches anything)

Patterns must be linear, meaning any variable
can appear at most once in any one pattern.

In the future, we will see additional patterns
coming from datatypes (such as lists).

Patterns can appear in declarations

Example:

val . int * real = (2, 3.14)

This pattern is a tuple -- a pair whose two
subpatterns are each variables.

Patterns can appear in declarations

Example:

val (k,r) : int * real = (2, 3.14)

The declaration creates two variable bindings
(behind the scenes in the environment):

[2/k, 3.14/r]

Patterns can appear in declarations

Example:

val: int = square(7)

This pattern is a constant.

This “declaration” contains no variables.
It will succeed only If the value
returned by square Is 49.

So it amounts to a test.

(Tests can have more elaborate patterns.)

Patterns can appear in declarations

In this example, a pattern extracts tuple elements:
(* £fibb : int -> int * int|n : 0,1,2,3,4,5, 6, 7
REQUIRES: n >= 0 £ : 1,1,2,3,5,8,13,21|

ENSURES: fibb(n) ==> (£, £__,)
with £ the n** Fibonacci number (let £, = 0).

*)

fun fibb (0:int) :int*int = (1,0)
| £fibb n =

let
val (a:int, b:int) fibb (n-1)

in
This Is how you should extract
end elements from a tuple.

Patterns can appear in declarations

In this example, a pattern extracts tuple elements:
(* £fibb : int -> int * int|n : 0,1,2,3,4,5, 6, 7
REQUIRES: n >= 0 £ : 1,1,2,3,5,8,13,21|

ENSURES: fibb(n) ==> (£, £__,)
with £ the n** Fibonacci number (let £, = 0).

*)

fun fibb (0:int) :int*int = (1,0)
| £fibb n =
let
val (a:int, b:int) = fibb(n-1)
in
PIIIIVIVIVIININND

Patterns can appear in declarations

In this example, a pattern extracts tuple elements:
(* £fibb : int -> int * int|n : 0,1,2,3,4,5, 6, 7
REQUIRES: n >= 0 £ : 1,1,2,3,5,8,13,21|

ENSURES: fibb(n) ==> (£, £__,)
with £ the n** Fibonacci number (let £, = 0).

*)

fun fibb (0:int) :int*int = (1,0)

| fibb n =
let
val (a:int, b:int) = fibb(n-1)
in
(a+b, a)
end

val (21, 13) = fibb 7

Patterns can appear in declarations

In this example, a pattern extracts tuple elements:
(* £fibb : int -> int * int|n : 0,1,2,3,4,5, 6, 7
REQUIRES: n >= 0 £ : 1,1,2,3,5,8,13,21|

ENSURES: fibb(n) ==> (£, £__,)
with £ the n** Fibonacci number (let £, = 0).

*)

fun fibb (0:int) :int*int = (1,0)

| fibb n =
let
val (a:int, b:int) = fibb(n-1)
in
(a+b, a)
end

val (21,) = £ibb 7

Patterns appear in case expressions

(case e of __—Note: => (not =).

plEDel

| p2 => e2

| pk => ek)

Patterns appear in case expressions

(case e of

pl => el
| p2 => e2
| pk => ek)

« Semantics similar to functions, with e playing role of argument.

» Typechecking:
— EXxpression e must have a type t’ and all pj must be able match type t’.
— The expressions ej must all have the same type, call it t (given types of
variables in associated patterns).
— Type t is the overall type of the case expression.

Patterns appear in case expressions

« Semantics similar to functions, with e playing role of argument.

» Typechecking:
— EXxpression e must have a type t’ and all pj must be able match type t’.
— The expressions ej must all have the same type, call it £ (given types of

variables in associated patterns).
— Type t is the overall type of the case expression.

Patterns appear in case expressions

(case e of
pl => el
| p2 => e2

| pk => ek)

« Semantics similar to functions, with e playing role of argument.

» Typechecking:
— EXxpression e must have a type t’ and all pj must be able match type t’.
— The expressions ej must all have the same type, call it t (given types of
variables in associated patterns).
— Type t is the overall type of the case expression.
* If typechecking succeeds, SML evaluates e. If e reduces to value v, SML

matches v against pl, p2, ..., then evaluates ej of first matching pj (if any).
If e reduces to a value w, SML returns w as the value of the case.

case IS useful to avoid nested if-then-else

(* example : int -> int
REQUIRES: true
ENSURES: example(x) returns

0O if x =1,
x*x - 1 1f x < 1,
and 1 - x*x*x 1if x > 1.

*)

fun example (x:int) :int =
(case (square x, x > 0) of

|
|)

case IS useful to avoid nested if-then-else

(* example : int -> int
REQUIRES: true
ENSURES: example(x) returns

0O if x =1,
x*x - 1 1f x < 1,
and 1 - x*x*x 1if x > 1.

*)

fun example (x:int) :int =
(case (square x, x > 0) of
(1, true) => 0
I
I)

case IS useful to avoid nested if-then-else

(* example : int -> int
REQUIRES: true
ENSURES: example(x) returns

0O if x =1,
x*x - 1 1f x < 1,
and 1 - x*x*x 1if x > 1.

*)

fun example (x:int) :int =
(case (square x, x > 0) of
(1, true) => 0
| (sqr, false) => sqr -1
I)

case IS useful to avoid nested if-then-else

(* example : int -> int
REQUIRES: true
ENSURES: example(x) returns

0O if x =1,
x*x - 1 1f x < 1,
and 1 - x*x*x if x > 1.
*) If second clause is relevant, get binding

[v/sqr],with v value of square x.
fun example (x:int) :int =

(case x > 0) of

true) => 0

| -false) => sqr - 1

)

case IS useful to avoid nested if-then-else

(* example : int -> int
REQUIRES: true
ENSURES: example(x) returns

0O if x =1,
x*x - 1 1f x < 1,
and 1 - x*x*x 1if x > 1.

*)

fun example (x:int) :int =
(case (square x, x > 0) of
(1, true) => 0
| (sqr, false) => sqr -1
| (sqr,) => 1 - x*sqr)

case IS useful to avoid nested if-then-else

(* example : int -> int
REQUIRES: true
ENSURES: example(x) returns

0O if x =1,
x*x - 1 1f x < 1,
and 1 - x*x*x 1f x > 1.
*) If third clause Is relevant, get binding

[v/sqr],with v value of square x.
fun example (x:int) :int =

(case x > 0) of

(1, true) => 0
| (sgr, false) => sqr - 1

| {sqrpy) => 1 - x*sqr)

Functions as
First-Class
Values

Passing a function as an argument

The argument type Is a pair
consisting of an int -> int function

and an int.

Passing a function as an argument

(* sqgrf : (int -> int) * int -> int

REQUIRES: true
ENSURES: sqrf

*)
fun sqgrf (£ : int
square (f (x))

(* Testing *)

val 36 = sqrf (fn

(£, x) ==> (£(x))*(£(x))

-> int, x : int) : int =

(n:int) => n + 2, 4)

Passing a function as an argument

(* sqgrf : (int -> int) * int -> int
REQUIRES: true
ENSURES: sqrf (f, x) ==> (£f(x))*(£f(x))
*)
fun sqrf (£ : int -> int, x : int) : int =

square (f (x))

(* Testing *)

Notice how we can write an anonymous
lambda expression inline.

Passing a function as an argument

(* sqgrf : (int -> int) * int -> int
REQUIRES: true
ENSURES: sqrf (f, x) ==> (£f(x))*(£f(x))
*)

fun sqrf (£ : int -> int, x : int) : int =

square (f (x))

Puzzle:
int) : int =

fun dotwice (£ : int -> int, x : :

Passing a function as an argument

(* sqgrf : (int -> int) * int -> int
REQUIRES: true
ENSURES: sqrf (f, x) ==> (£f(x))*(£f(x))
*)

fun sqrf (£ : int -> int, x : int) : int =

square (f (x))

Puzzle:

fun dotwice (£ : int -> int, x : int) : int =
sqrf (fn (n:int) => sqrf(f,n), x)

dotwice (fn (k:int) => k, 3) <« 22272727277
e

identity function

Passing a function as an argument

(* sqgrf : (int -> int) * int -> int
REQUIRES: true
ENSURES: sqrf (f, x) ==> (£f(x))*(£f(x))
*)

fun sqrf (£ : int -> int, x : int) : int =

square (f (x))

Puzzle:

fun dotwice (£ : int -> int, x : int) : int

sqrf (fn (n:int) => sqrf(f,n), x)

dotwice (fn (k:int) => k, 3) <« 22272727277
|_|_l
identity function Answer: 81

Some Comme.n‘t.s abaud:.
NS

[-mianessa]
o)

e If e ca v and €,c5v
with v a value, then ¢ E e, .

o It e =¢, then e\gez.

® I‘G e\ =$ e. QV\A ez ﬁ e—)
With € an expression | +hen €, 2= €,
z N
o Coavtion: e, = ez ClOQS

not hecessarily inaply
thet €, =3e, or e, =Ye,.

Ex: 14100+ 7 2= 45

A C._omwxevx{ a\bou“. :_"!...

[.3/3)5/2] (‘?vx (X:ini) = xv*z)

I1¢

(‘?n (x:\.&:)'—") X'\'%)

However, +ke3 are not e;ua\/
nor does one rec(uce.-l-oﬁ\e cther.

In Par'l'n'cu.\ar, the addition AL
does not haP/pen when
(fn (x:int) = x+?*%) s writrenfdedined_

(The bad& Xtyt2 15 e\m'uq"‘ef when
the \c“*‘\C'H(JH 5 Q/P/p/n:&(¢ an a?una,f

A PEr dur €valuahen rules.

A COMW\&V\'L &EOM{ _Q_

e

[Ba.sis L: Brm'} bini.'ng{} (‘@n (X : \n‘f) = X+ %)

Howe.ver, ""'\Qa are not e;ua\/
nor does one reduce to the cther.

In Par’rim\ar, the addition AL

does not ha/)/oen when
(-Pv\ (x:iv\'l-) = xf?h!) 1S wr;ﬂen/clee:n&‘,
(The bm"a. X+3+i 1S evn'uq"‘ej when

the ‘Func'h'an S Q/P/p,t:&c 1O an orgume,t
¥ PEr our evalu aﬁkﬁnrde;?

A comment about Totalt
SMFPU’SE ‘P 4 Wt = mt,

I¢ £ i tetal then
M+ €D E F@+ A0,

W)\J ?

I$ -F 1S possfé'a not 'l'd"'“oﬂ)‘f‘ﬁe\n Maabe
OREI0) ;"é L@+ €0,

WhJ e

That is all.

Please have a good weekend.

See you Tuesday.

	Title.pdf
	15-150Principles of Functional Programming

