15-150
Spring 2012

Streams

cat "../../asgn/hw/09/code/ratplane.smlL”
|> grep (linesMatching (String "dist"))
|> nl
|> truncate 3 [> flatten

Streams

functional interface to an impure world

benign effects: use mutation under the hood to
achieve a functional interface

Benign Effects

fun reachable g x y =
let
val visited = ref Visited.empty

fun dfs (x : Node.t) : bool =
case Node.compare (x, y) of
EQUAL => true
| _ => let val (ref curVisited) = visited in
case Visited.member curVisited x of
true => false
| false => let val () = visited := (Visited.insert curVisited x) in
(NodeSet.exists dfs (G.successors g x)) end
end
in
dfs x

end

Benign Effects

imperative implementation that
looks functional to clients

sometimes effects are faster or
nicer (implicit communication)

but have to think about parallelism...

Vlemoizer

fun memo (f : ((D.Key.t -> 'a) -> (D.Key.t -> "a)))
: (D.Key.t => 'a) =
let
val hist : "a D.dict ref = ref D.empty

fun wrapper x =
case D.lookup (!hist) x
of SOME v => v
| NONE => let val res = f wrapper x

in
hist := D.insert (!hist) (x, res);
res
end
in
wrapper
end
fun fib _ (@ : IntInf.int) = (@ : IntInf.int)
| fib _ 1 =1
| fibfn=f(n-21)+f (n - 2)

Ephemeral
Data Structures

signature EPH_GAME =
S1ig

type state

type move

val make_move : (state * move) -> unit

end

Ephemeral
Data Structures

admit more implementations

but complicate backtracking/parallelism

Using Effects?

persistent ephemeral

parallel P benign | coneurrency

effects mutation

sequential OK

Mutation

fun update (f : "a -> 'a) (r : 'a ref) : unit =
let val (ref cur) =r inr := f cur end

fun deposit n a = update (fn x => X + n) a

fun withdraw n a = update (fn x => x - n) a

val account = ref 100
val () = deposit 100 account
val () = withdraw 50 account
val _ = Seq.tabulate (fn @ => deposit 100 account
| 1 => withdraw 50 account) 2

Mutation

can lead to race conditions

Parallelism and Effects

Determinism?

®Pure FP

e Non-termination

e EXxceptions

e|/O Have to think about it
e \utation Have to think about it

Cost Graphs

Cost Graphs

separate the generation of work from scheduling it
onto processors (according to Brent’s theorem)

Functors

signature TWO_PLAYERS =

sig
structure Maxie : PLAYER
structure Minnie : PLAYER
sharing type Maxie.Game.state = Minnie.Game.state
sharing type Maxie.Game.move = Minnie.Game.move
end

functor Referee (P : TWO_PLAYERS) : sig val go : unit -> unit end

Functors

allow code reuse via
abstraction over both types and values

Persistent
Data Structures

val choose : Game.player -> edge Seq.seq -> edge =
fn Game.Maxie => SeqUtils.reducel EdgeUtils.max
| Game.Minnie => SeqUtils.reducel EdgeUtils.min

fun search (depth : int) (s : Game.state) : edge =
choose (Game.player s)
(Seq.map
(fn m = (m , evaluate (depth - 1) (Game.make_move (s,m))))
(Game.moves s))

and evaluate (depth : int) (s : Game.state) : Game.est =
case Game.status s of
Game.Over v => Game.Definitely v
| Game.In_play =>
(case depth of
@ => Game.estimate s
| _ => edgeval(search depth s))

Persistent
Data Structures

are good for backtracking

Rep. Invariants

functor RBTDict(Key : ORDERED) : DICT =
struct

datatype 'v tree =
Empty
| Node of 'v tree * (color * (Key.t * 'v)) * 'v tree

(* representation invariant: 1s a RBT *)
type 'v dict = 'v tree

end

Rep. Invariants

abstract types localize reasoning about invariants
to the implementation of the abstraction

Rep. Invariants

fun insert d (k, V) =
let
(* Root is Red, both RBT --> ARBT
Root is Black, at most one ARBT, and the other(s) RBT --> RBT
o
fun balance p =
case p of
(Node(Node (a , (Red, x) , b) , (Red , ¥) , ¢) , (Black , 2) , d) =
Node (Node (a , (Black , x) , b) , (Red , y), Node (¢ , (Black , 2) , d))
| (Node(a , (Red , x) , Node (b , (Red , y) , ©)) , (Black , z) , d) =
Node (Node (a , (Black , x) , b) , (Red , y), Node (¢ , (Black , z) , d))
| (@, (Black , x) , Node(Node (b , (Red, y) , ¢) , (Red , 2) , d)) =
Node (Node (a , (Black , x) , b) , (Red , y), Node (¢ , (Black , z) , d))
| (a, (Black , x) , Node(b , (Red , y) , Node (c , (Red , 2) , d))) =
Node (Node (a , (Black , x) , b) , (Red , y), Node (¢ , (Black , z) , d))
| _ => Node p
(* if t is an ARBT then blackenRoot t is a RBT *)
fun blackenRoot t = case t of Leaf => Leaf
| Node (1 , (L, x), r) = Node (1, (Black , x) , r)
(* if d is an RBT[Red] then ins d is an ARBT
if d is an RBT[Black] then ins d is an RBT

-
fun ins d =
case d of

Leaf => Node (Wty, (Red, (k, v)), Gl'pt)’)
| Node (1, (¢, (k', v')), r) =
case Key.compare (k,k') of
EQUAL => Node (1, (c, (k, v)), r)
| LESS => balance (ins 1, (¢ , (k', v')), r)
| GREATER => balance (1, (¢ , (k', v')), ins r)
in blackenRoot (ins d)
end

lype classes

signature ORDERED =
sig

type t

val compare : t * t -> order
end

structure IntLt : ORDERED =
struct
type t = int
val compare
end

Int.compare

lype classes

describe a type equipped with a (hon-exhaustive)
collection of operations

Type-directed
programming

(string * (int list * string list)) list

type grades

val db : grades =
[("drl", ([95,99,98], C["y","n","y","y"1))),
("ievu : ([%,%,%] : ([lly" . lly" b llyll i llyll 2 llyll]))) =
("nkindber‘" . ([9?’99’99] = ([lly" : lly" : "yll : lly" : lly"]))) s
("Sr'ikr'iSh" . ([1%’ 1%, 1%] ! ([nnn . nnn : nnn . nyn : nnn]))) :
(" r‘memn" " ([98,98,98] : (["y" : llyll : llyll . "y" : "yll]))) .
(" r‘"“‘lr'cek" , ([98’ 1%’98] , (["y" E lly" : "yll E lly" X lly"])))

]
Structure SG =
Serializelist(
SerializePair(
struct
structure S1 = SerializeString
structure S2 = SerializePair(
struct

erializelist(Serializelnt)
erializelist(SerializeString)

structure S1
structure S2
end)

=S
=S

end))

Abstract types

signature SEQUENCE =
s1g

type 'a seq
val map : ("a -> 'b) -> "a seq -> 'b seq
val reduce : (("a * 'a) -> "a) -> "a -> 'a seq -> 'a
val tabulate : (int -> 'a) -> int -> 'a seq
val nth : 'a seq -> int -> 'a
end

Abstract types

signature SPACE = sig

(* scalars and operations on them *)
structure Scalar : SCALAR
type scalar = Scalar.scalar

(* points and vectors and operations on them *)
type point
type vec

val vecToString : vec -> string
val pointToString : point -> string

val ++ : vec * vec -> vec (* vl ++ v2 evaluates to the sum of the vectors *)
val ** : vec * scalar -> vec (* v ** ¢ evaluates to the scalar product of v with ¢ *)
val // : vec * scalar -> vec (* v // ¢ evaluates to the scalar product of v with (1/¢c) *)

val --> : point * point -> vec (* X --> Y is the vector from X to Y *)

end

Abstract types

allow clients and implementatons
to evolve separately

localize reasoning

let you divide and conquer your problems

Sequences

fun accelerations (bodies : body Seq.seq)
: vec Seqg.seq =
Seqg.map
(fn bl =
sum bodies (fn b2 => accOn (b1l , b2)))
bodies

Sequences

provide parallelism from mathematical
transformations on bulk data

Exceptions

exception NoSubset
fun subset_sum_exn (1 : int list, s : int) : int list =
case 1
of [] => (case s of
2 = []
| _ => raise NoSubset)
| x::xs => (X :: subset_sum_exn (xs, s - x))
handle NoSubset => subset_sum_exn (xs , s)

Exceptions

are equivalent to options,
and therefore OK in parallel code

are useful for signaling errors

are useful for backtracking

Staging

infixr 8 OR
infixr 9 THEN
fun ml OR m2 = fn ¢s = fn k => ml ¢s k orelse m2 cs k
fun ml THEN m2 = fn ¢s = fn k = ml ¢s (fn ¢s' = m2 c¢cs' k)
fun REPEATEDLY m = fn ¢s => fn k =>

let fun repeat cs' = k ¢cs' orelse m cs' repeat

in

repeat cs
end

fun match (r : regexp) : matcher =

case r of
Zero => FAIL
One => NULL

Char ¢ => LITERALLY c

Plus (ri,r2) => match rl OR match r2
Times (ri,r2) => match rl THEN match r2
Star r => REPEATEDLY (match r)

Staging

curried functions can do useful work
before getting all of their arguments

Regexps

fun match r cs k =
case r of
Zero => false

| One => k cs

| Char ¢ => (case c¢s of
=> false

| ¢' :: ¢cs'" = ¢ = ¢' andalso k cs')

Plus (ri,r2) => match rl cs k orelse match r2 cs k
Times (rl,r2) => match rl cs (fn cs' => match r2 cs' k)

Star r =
let fun matchstar cs' = k ¢s' orelse match r ¢cs' matchstar
in

matchstar cs
end

Regexps

it takes mathematical sophistication
to get code right

higher-order functions reify control flow as data,
SO you can manipulate it

Functions as values

(* represent ¢c_0 xAQ + c_1 X + c_2 xA2 + ...
by the function that maps
the natural number 1 to the coefficient c_1
')
type poly = int -> rat

fun differentiate (p : poly) : poly =
fni=>C(1+21)//1)** (p (1 + 1))

Functions as values

functor FunDict (K : ORDERED) : DICT =
struct
structure Key = K

datatype 'v func = Func of (Key.t -> 'v option)
type 'v dict = 'v func

(* Purpose: Returns a dictionary that contains no mappings *)
val empty = Func (fn _ => NONE)

(* Purpose: Inserts an element into a dictionary *)
fun insert (Func f) (k, v) =
Func
(fn k" =
case Key.compare (k, k') of
EQUAL => SOME v
| _ = f k')

(* Purpose: Finds an element in a dictionary *)
fun lookup (Func f) k = f k
end

Functions as values

some values are (nhatural numers, lists, trees, ...)

some values do (functions, streams, ...)

“Do be do be do” -- Sinatra

Functions as args

val maxT : int tree -> int = reduce Int.max minint
val maxAll : (int tree) tree -> int = maxT o map maxT

fun withSuffixes (t : int tree) : (int * int tree) tree
= zip (t, suffixes t)

val bestGain : int tree -> int =
maxAll
o (map (fn (buy,sells) => (map (fn sell => sell - buy) sells)))
o withSuffixes

Functions as args

higher-order functions abstract
patterns of computation

express algorithms using function composition

Functions as args

fun plus (ml : matrix, m2 : matrix) : matrix =
ListPair.map (ListPair.map op++) (ml, m2)

fun summat (ms : matrix list) : matrix =
case ms of
nil => zed (0, @)
| m::ms => List.foldl plus m ms

fun allpairs (11 : "a list, 12 : 'b list) : ("a * 'b) list list =
List.map (fn a => List.map (fn b => (a, b)) 12) 11

fun outerprod (vl : rat list, v2 : rat list) : matrix =
map (map Rational.times) (allpairs (v1, v2))

fun transpose (m : "a list list) : 'a list list =
case m of
[1 => [

| X :: xs => ListPair.map (fn (a, b) => a :: b) (x, transpose xs)

fun times (ml : matrix, m2 : matrix) : matrix =
summat (ListPair.map outerprod (transpose ml, m2))

Abstract patterns

functor GoogleMapReduce (Key : ORDERED) :
sig
structure D : DICT
val gmapred : ('a -> (D.Key.t * 'v) Seq.seq)
> ('v ¥ 'v > "v)
-> 'a Seq.seq
-> 'v D.dict
end

val wordCounts : string Seq.seq -> int MR.D.dict =
MR.gmapred (fn s => Seq.map (fn w => (w, 1))
(SeqUtils.words s))
Cop+)

HOFs as “iterators”

signature MAPABLE =
sig
type 'a collection
val mapreduce : ('a -> 'b)
->'b
-> ('b * 'b -> 'b)
-> 'a collection
->'b
end

Datatypes

datatype block = A | B | C

datatype move =
PickUpFromBlock of block * block
| PutOnBlock of block * block
| PickUpFromTable of block
| PutOnTable of block

datatype fact =
Free of block
| On of block * block
| OnTable of block
| HandIsEmpty
| HandHolds of block

type state = fact list

Datatypes

represent your problem
make error states unrepresentable

recursive functions come from recursive data

Datatypes

datatype shape =
Rect of point * point (* bottom-left and upper-right *)
| Disc of point * int (* center and radius *)
| Intersection of shape * shape
| Union of shape * shape
| Without of shape * shape
| Translate of shape * (int * int)
| ScaleDown of shape * (int * int) (* x factor, y factor *)
| ScaleUp of shape * (int * int) (* x factor, y factor *)

Datatypes

(* Purpose: contains(s,p) == true if p is in the shape,
or false otherwise *)
fun contains (s : shape, p as (x,y) : point) : bool =
case s of
Rect ((xmin,ymin),(xmax,ymax)) =>
xmin <= X andalso x <= xmax andalso
ymin <= y andalso y <= ymax
| Disc ((cx,cy),r) =>
square(x - cx) + square(y - cy) <= square r
Intersection(sl,s2) => contains(sl,p) andalso contains(s2,p)
Union(sl,s2) => contains(sl,p) orelse contains(s2,p)
Without (s1,s2) => contains (sl1l,p) andalso (not (contains (s2,p)))
Translate (s,(tx,ty)) => contains(s , (x - tx, y - ty))
ScaleDown (s,(xf,yf)) => contains (s , (xf * x, yf * y))
ScaleUp (s,(xf,yf)) => contains (s , (x div xf, y div yf))

=

o
- W
B

= =
o o

T " " W
B e m o

datatype tree
Or all
| Node of tree * int * tree

fun splitAt (t : tree , bound : int) : tree * tree =
case t of
Empty => (Empty , Empty)
| Node (1 , x, r) =>
(case bound < x of
true => let val (11 , 1r) = splitAt (1 , bound)
in (11 , Node (lr , x , r))
end
| false => let val (rl , rr) = splitAt (r , bound)
in (Node (1 , x, rL) , rr)

end)
fun merge (tl1 : tree , t2 : tree) : tree =
case tl1 of
Empty => t2

| Node (11 , x , rl) =>
let val (12 , r2) = splitAt (t2 , x)

in
Node (merge (11 , 12) ,
X,
merge (rl , r2))
end

fun mergesort (t : tree) : tree =
case t of
Empty => Empty
| Node (1 , x, r) =>
merge(merge (mergesort 1 , mergesort r),
Node(Empty,x,Empty))

Work/Span

trees are better than lists for parallelism

you can reason abstractly about
both sequential and parallel complexity

Pairs

“*harder” problems can be easier to solve

(* Purpose: reverse 1 in linear time *)
fun reviwoPiles (1 : int list, r : int list) : int list =
case 1 of

[l =>r

| (x :: xs) => reviwoPiles(xs , x :: r)

fun fastReverse (1 : int list) : int list = reviwoPiles(l , [])

ListS

(* Purpose: sum the numbers in the list *)
fun sum (1 : int list) : int =
case 1 of
[1 => 0
| X :: XS => X + Sum XS
val 15 = sum [1,2,3,4,5]

LIstS

(once upon a time,
you didn’t know how to write
simple recursive functions)

Recursion

(* Purpose: double the number n

Examples:

double @ ==> 0

double 3 ==> 6
D,
fun double (n : int) : int =

case n of
O = 0
| _ => 2 + (double (n - 1))

(* Tests *)
val @ = double 0
val 6 = double 3

Recursion

(once upon a time,
you didn’t know how to write
simple recursive functions)

lyping and Eval.

2.3 Ant

1 +1 : int

(1 + 2) * (3 + 4) : int

"I am" : string

"I am”" © " the walrus"” : string
intToString 5 : string

"the walrus" + 1 is ill-typed

lyping and Eval.

(or what the basic ingredients of a program are)

Deterministic
Parallelism

fun sum (r : int seq) : int =
reduce (fn (X,y) => X +y) O r

fun count (s : int seq seq) : int =
sum (map sum Ss)

Deterministic
Parallelism

In the first lecture, this code was mysterious!
Now, it’s (hopefully) the easiest thing in the world.

Course Objectives

programming: datatypes, functions, exceptions,
sequences, references, streams, ...

verification: proofs by induction, using the
language-based evaluation model

analysis: recurrences for work and span;
big-O

structuring large programs: abstract types, functors

Practice Exam: will be posted soon
Office hours: Next Tuesday and Thursday

Exam review: Wednesday, May 9
4-5:30pm
here

Exam: Friday, May 11 8:30 - 11:30 a.m.
DH 2210 & DH 2315(here)
cumulative, but biased towards 2nd half
1 sheet of notes

Quo vadimus

You mignht also like

15-210: Parallel data structures and algorithms

15-312: Principles of Programming Languages
15-317: Constructive Logic

80-413: Category Theory

Big uses of FP

Traditional:

e Compilers for functional languages:
most FP compilers are implemented
mostly iIn themselves

® Theorem provers, hardware/software verification
Twelf,Agda,Coq,lsabelle,ACL2,...

New: Finance
Jane Street Capital, Credit Suisse,
Standard Charter, ...

Tools you might like

oML ton: fast sequential execution of SML
e Manticore (experimental): parallelism

Better libraries/tools/ecosystem:

eOCaml: very similar to SML

eHaskell: call-by-name (with memoization)
monadic effects
otherwise pretty similar to ML
good implementation of parallelism

eScheme (Racket): untyped

It’s not all-or-nothing
any more:

FP In "other” lanuages

(Other = not SML, OCaml, Haskell,
Lisp, Scheme, Erlang, ...)

datatype exp =
Int of int
| Plus of exp * exp

fun eval e =
case e of
Int 1 =1

| Plus (el , e2) => eval el + eval e2

class tm:
pass
class Int(tm):
def - in3t. . (self. x):
self.x = x
class Plus(tm):
def __init__(self, el, e2):
self.el = el
self.e2 = e2

def eval(tm):
try: raise tm
except Int: return tm.x
except Plus: return eval(tm.el) + eval(tm.e2)

(Simmons, Beckman, Murphy VII, SIGBOVIK 2010)

Python doesn’t have pattern matching, you say?

Any value can be raised as an exception,
and you can case on the class of the exception

It’s not all-or-nothing
any more:

FP In "other” languages

(seriously)

FP In other languages

oF# (ML + objects) in Microsoft Visual Studio
eScala (“object-oriented ML”) on JVM

e Garbage collection
(automatic memory management)
e Functions as values In
C# (“delegates”)
Python, Ruby, JavaScript, ...
e Polymorphism
“Generics” in Java and C

Course Objectives

programming: datatypes, functions, exceptions,
sequences, references, streams, ...

verification: proofs by induction, using the
language-based evaluation model

analysis: recurrences for work and span;
big-O

structuring large programs: abstract types, functors

Take-away SKills

programming:
think about mathematical transformations on data
control your use of effects

verification: reason inductively about invariants
analysis: use big-O to guide your coding

structuring large programs: hide information

code IS math
code Is art

code IS math

parallelism: mathematical transformations on data

verification: code is subject to mathematical analysis

code Is art

code can be beautiful

code is for people: a good program explains an idea

code can change the way you think

code IS math
code Is art

