
15-150
Spring 2012

Streams

Streams

benign effects: use mutation under the hood to
achieve a functional interface

functional interface to an impure world

Benign Effects

Benign Effects
imperative implementation that

looks functional to clients

sometimes effects are faster or
nicer (implicit communication)

but have to think about parallelism…

Memoizer

Ephemeral
Data Structures

Ephemeral
Data Structures

admit more implementations

but complicate backtracking/parallelism

Using Effects?

parallel

sequential

persistent ephemeral

FP
benign
effects mutation

OK

concurrency

Mutation

Mutation

can lead to race conditions

Parallelism and Effects

•Pure FP Always OK
•Non-termination Always OK
•Exceptions Always OK
•I/O Have to think about it
•Mutation Have to think about it

Determinism?

Cost Graphs

Cost Graphs

separate the generation of work from scheduling it
onto processors (according to Brent’s theorem)

Functors

Functors

allow code reuse via
abstraction over both types and values

Persistent
Data Structures

Persistent
Data Structures

are good for backtracking

Rep. Invariants

Rep. Invariants

abstract types localize reasoning about invariants
to the implementation of the abstraction

Rep. Invariants

Type classes

describe a type equipped with a (non-exhaustive)
collection of operations

Type classes

Type-directed
programming

Abstract types

Abstract types

Abstract types

allow clients and implementatons
to evolve separately

localize reasoning

let you divide and conquer your problems

Sequences

Sequences

provide parallelism from mathematical
transformations on bulk data

Exceptions

Exceptions

are equivalent to options,
and therefore OK in parallel code

are useful for signaling errors

are useful for backtracking

Staging

Staging

curried functions can do useful work
before getting all of their arguments

Regexps

Regexps

it takes mathematical sophistication
to get code right

higher-order functions reify control flow as data,
so you can manipulate it

Functions as values

Functions as values

Functions as values

some values are (natural numers, lists, trees, …)

some values do (functions, streams, …)

“Do be do be do” -- Sinatra

Functions as args

Functions as args

higher-order functions abstract
patterns of computation

express algorithms using function composition

Functions as args

Abstract patterns

HOFs as “iterators”

Datatypes

Datatypes

represent your problem

make error states unrepresentable

recursive functions come from recursive data

Datatypes

Datatypes

Work/Span

Work/Span

trees are better than lists for parallelism

you can reason abstractly about
both sequential and parallel complexity

Pairs
“harder” problems can be easier to solve

Lists

Lists

(once upon a time,
you didn’t know how to write
simple recursive functions)

Recursion

Recursion

(once upon a time,
you didn’t know how to write
simple recursive functions)

Typing and Eval.

(or what the basic ingredients of a program are)

Typing and Eval.

Deterministic
Parallelism

In the first lecture, this code was mysterious!
Now, it’s (hopefully) the easiest thing in the world.

Deterministic
Parallelism

programming: datatypes, functions, exceptions,
 sequences, references, streams, ...

Course Objectives

verification: proofs by induction, using the
 language-based evaluation model

analysis: recurrences for work and span;
 big-O

structuring large programs: abstract types, functors

Practice Exam: will be posted soon

Office hours: Next Tuesday and Thursday

Exam review: Wednesday, May 9
 4-5:30pm
 here

Exam: Friday, May 11 8:30 ‐ 11:30 a.m.
 DH 2210 & DH 2315(here)
 cumulative, but biased towards 2nd half
 1 sheet of notes

Quo vadimus

15-210: Parallel data structures and algorithms

You might also like

15-312: Principles of Programming Languages

15-317: Constructive Logic

80-413: Category Theory

Big uses of FP

•Compilers for functional languages:
 most FP compilers are implemented
 mostly in themselves
•Theorem provers, hardware/software verification
 Twelf,Agda,Coq,Isabelle,ACL2,…

Traditional:

New: Finance
 Jane Street Capital, Credit Suisse,
 Standard Charter, …

Tools you might like
•MLton: fast sequential execution of SML
•Manticore (experimental): parallelism

Better libraries/tools/ecosystem:
•OCaml: very similar to SML
•Haskell: call-by-name (with memoization)
 monadic effects
 otherwise pretty similar to ML
 good implementation of parallelism
•Scheme (Racket): untyped

It’s not all-or-nothing
any more:

FP in “other” lanuages

(Other = not SML, OCaml, Haskell,
 Lisp, Scheme, Erlang, …)

(Simmons, Beckman, Murphy VII, SIGBOVIK 2010)

Python doesn’t have pattern matching, you say?

Any value can be raised as an exception,
and you can case on the class of the exception

(seriously)

It’s not all-or-nothing
any more:

FP in “other” languages

•F# (ML + objects) in Microsoft Visual Studio
•Scala (“object-oriented ML”) on JVM

•Garbage collection
 (automatic memory management)
•Functions as values in
 C# (“delegates”)
 Python, Ruby, JavaScript, …
•Polymorphism
 “Generics” in Java and C#

FP in other languages

programming: datatypes, functions, exceptions,
 sequences, references, streams, ...

Course Objectives

verification: proofs by induction, using the
 language-based evaluation model

analysis: recurrences for work and span;
 big-O

structuring large programs: abstract types, functors

programming:
 think about mathematical transformations on data
 control your use of effects

Take-away Skills

verification: reason inductively about invariants

analysis: use big-O to guide your coding

structuring large programs: hide information

code is math

code is art

code is math

parallelism: mathematical transformations on data

verification: code is subject to mathematical analysis

code is art

code can be beautiful

code is for people: a good program explains an idea

code can change the way you think

code is math

code is art

