
15-150 Lecture 9:

Options; Domain-specific Datatypes; Functions as Arguments

Lecture by Dan Licata

February 14, 2012

Programs must be written for people to read, and only incidentally for machines to
execute. — Abelson and Sussman, Structure and Interpretation of Computer Programs

Programming is about communicating with people: you, when you come back to a piece of code
next year; other people on your project. Today we’re going to take the kid gloves off, and talk
about a few ways to make your ML programs more readable:

• Use the type system to communicate. We’ll talk about options and domain-specific datatypes
as ways of doing this.

• Abstract repeated patterns of code. We’ll see our first examples of higher-order functions,
which are an extremely powerful way of doing this.

1 Option Types

Sometimes, when I’m walking down the street, someone will ask me “do you know what time it
is?” If I feel like being a literalist, I’ll say “yes.” Then they roll their eyes and say “okay, jerk, tell
me what time it is!” The downside of this is that they might get used to demanding the time, and
start demanding it of people who don’t even know it.

It’s better to ask “do you know what time is it, and if so, please tell me?”—that’s what “what
time is it?” usually means. This way, you get the information you were after, when it’s available.

Here’s the analogy:

doyouknowwhattimeitis? : person -> bool

tellmethetime : person -> int

whattimeisit : person -> int option

Options are a simple datatype:

datatype ’a option =

NONE

| SOME of ’a

Here ’a is a type variable. This means there is a type T option for every type T. The same
constructors can be used to construct values of different types. For example
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val x : int option = SOME 4

val y : string option = SOME "a"

This is because NONE and SOME are polymorphic: they work for any type ’a.

NONE : ’a option

SOME : ’a -> ’a option

1.1 Boolean Blindness

Don’t fall prey to boolean blindness: boolean tests let you look, options let you see. If you write

case (doyouknowwhattimeitis? p) of

true => tellmethetime p

false => ...

The problem is that there’s nothing about the code that prevents you from also saying tellmethetime
in the false branch. The specification of tellmethetime might not allow it to be called—but that’s
in the math, which is not automatically checked.

On the other hand, if you say

case (whattimeisit p) of

SOME t => ...

NONE => ...

you naturally have the time in the SOME branch, and not in the NONE branch, without making
any impolite demands. The structure of the code helps you keep track of what information is
available—this is easier than reasoning about the meaning of boolean tests yourself in the specs.
And the type system helps you get the code right.

Here’s a less silly example. Returning to the lookup example from last time, when you say

case contains(letters,unknown) of

true =>

(* now we know that unknown is in letters *)

... lookup(letters,unknown) ...

| false => (* do something else *) ...

there’s nothing that prevents you from calling lookup in the false branch, except for some spec
reasoning, which you can get wrong.

If you write a version of lookup using options:

(* if k is in d then

lookup_opt(d,k) == SOME v, where v is the value associated with k in d

if k is not in d then lookup_opt(d,k) == NONE

*)

fun lookup_opt (d : ’a grades, k : string) : ’a option =

case d of
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Empty => NONE

| Node(l,(k’,v),r) =>

(case String.compare(k,k’) of

EQUAL => SOME v

| LESS => lookup_opt(l,k)

| GREATER => lookup_opt(r,k))

then you can eliminate the need to first look and then see. We weaken the pre-condition—the
function works on any key and database. But this comes at the expense of weakening the post-
condition—it no longer definitely returns a grade, but instead returns an ’a option. In the process,
we’ve fused contains and lookup into, so we can see what we looked at.

When you use lookup_opt, you naturally have the grade in the SOME branch, without doing
any spec reasoning.

case lookup_opt(letters,unknown) of

SOME grade => ... grade ...

| NONE => (* do something else *)

1.2 Commitmentophobia

In ML, the type system the type system reminds you that lookup_opt might fail, and forces you
to case on a value of option type. You can’t treat a T option as a T, and write something like

"The grade is " ^ lookup_opt(letters,unknown)

when lookup_opt(letters,unknown) is actually NONE. You have to explicitly pass from the T option

to the T by case-analyzing, and handle the failure case.
Another metaphor: Some of you might be dating people. Here’s an analogy:

T = I’ll see you tonight

T option = Maybe I’ll see you tonight

If you say “I’ll see you tonight” and then you don’t, your boyfriend or girlfriend is gonna be mad.
If you say “maybe I’ll see you tonight” and you don’t. . . well, they’ll still be mad, but at least you
won’t feel like you did anything wrong. However, while saying maybe might be good when you’re
playing hard to get at the begining, if you never make any promises, eventually they’ll get sick of
the drama and break up with you.

Here’s the point of this story: Languages like C and Java are for commitmentophobes, in that
you can only say “maybe. . . ”. The reason for this is the null pointer : when you say String in
Java, or int* in C, what that means is “maybe there is a string at the other end of this pointer, or
maybe not”. You’d write lookup_opt but give it the type of lookup, and so you’d never be sure
that the grade is actually there. Tony Hoare calls this his “billion dollar mistake”—the cost of not
making this distinction, in terms of software bugs and security holes, is huge.

In ML, you can use the type system to track these obligations. If you say T, you know you
definitely absolutely have a T. If you say T option, you know that maybe you have one, or maybe
not—and the type system forces you to handle this possibility. Thus, the distinction between T

and T option lets you make appropriate promises, using types to communicate.
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1.3 How not to program with lists

This whole discussion about options may seem obvious, but functional languages like Lisp and
Scheme are based on the doyouknow/tellme style. For example, the interface to lists is

nil? -- check if a list is empty

first (car) -- get the first element of a list, or error if it’s empty

rest (cdr) -- get the tail of a list, or error if it’s empty

and you write code that looks like

(if (nil? l) <case for empty> <case for cons, using (first l) and (rest l)>)

Of course you can also accidentally call first and rest in the ¡case for empty¿, but they will fail.
On the other hand, if you write

case l of

[] => ...

| x :: xs => ...

then the code naturally lets you see what you looked at.

2 Constructive Solid Geometry

Thus far, we’ve mostly used datatypes for things that feel like general-purpose data structures
(lists, trees, orders, . . . ). Another important use of them is domain-specific datatypes: you define
some datatype that are specific to an application domain. This lets you write clear and readable
code.

As an example, we’ll draw some pictures using constructive solid geometry : we construct pictures
by combining certain basic shapes. In graphics, people make three-dimensional models of scenes
they plan to turn into pictures or movies. A complicated three-dimensional object (say, Buzz
Lightyear) is defined in terms of some basic shapes: spheres, rectangles, etc. This code is inspired
by the idea of CSG but is highly simplified: we are only working in two dimensions, and the only
thing your constructions will be able to do is report “black” or “white” for a particular point.

For example, say that we want to represent the following shapes, where all points will be
represented by Cartesian xy coordinates in the plane:

• a filled rectangle, specified by its lower-left corner and upper-right corner

• a disc, specified by its center and radius

• the intersection of two shapes, which contains all points that are in both

• the union of two shapes, which contains all points that are either

• the subtraction of two shapes, which contains all points in the first that are not in the second

We can represent these constructions using a datatype:
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type point = int * int (* in Cartesian x-y coordinate *)

datatype shape =

Rect of point * point

| Disc of point * int

| Intersection of shape * shape

| Union of shape * shape

| Without of shape * shape

For example, if we make a shape

Union(Rect((0,0),(100,100)),

Union(Rect((100,100),(200,200)),

Disc((100,100),40)))

it looks kind of like a bow tie:

Here’s a more complicated shape:

val cat =

let val body = Rect((100,50),(250,150))

val tail = Rect((250,120),(375,135))

val head = Disc((100,175),60)

val earspace = Rect((75,205),(125,250))

val lefteye = Disc((75,175),5)

val eyes = Union(lefteye,

Translate (lefteye,(50,0)))

in

5



Union(Union(body,

tail),

Without(head,

Union(earspace,eyes)))

end

and here’s how it renders:

2.1 Displaying shapes

I’m displaying shapes using a bunch of code for writing out a bitmap file that says what color each
pixel should be. The interesting bit of this is telling whether a point is in a shape:

(* Purpose: contains(s,p) == true if p is in the shape,

or false otherwise *)

fun contains (s : shape, p as (x,y) : point) : bool =

case s of

Rect ((xmin,ymin),(xmax,ymax)) =>

xmin <= x andalso x <= xmax andalso

ymin <= y andalso y <= ymax

| Disc ((cx,cy),r) =>

square(x - cx) + square(y - cy) <= square r

| Intersection(s1,s2) => contains(s1,p) andalso contains(s2,p)

| Union(s1,s2) => contains(s1,p) orelse contains(s2,p)

| Without (s1,s2) => contains (s1,p) andalso (not (contains (s2,p)))
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This illustrates recursion over domain-specific datatypes: you have one branch for each con-
structor, and structural recursive calls on all the sub-shapes.

2.2 Programming Shapes

Why do we want to represent shapes in a programming language? Thus far, it would probably be
easier to draw those pictures by hand. The advantage of having a programmatic representation is
that we can program shapes.

For example, I wrote some code to compute a bounding box:

(* boundingbox s computs a rectangle r (lower-left,upper-right),

such that if p is in s then p is in r

*)

fun boundingbox (s : shape) : point * point = ...

We can use this to draw Schröedinger’s cat:

Union (cat , rectb(boundingbox cat,25))

The bitmap-writing code uses the bounding box code to automatically choose the size of the
bitmap.

We can also define shapes recursively. The following example uses two new shape constructors,
Translate(s,(x,y)) (translate s by (x,y)) and ScaleDown(s,(xf,xf)) (shrink s by the scale
factor xf for the width and yf for the height); it’s simple to extend contains for these:

(* assumes s is square and fills the bottom

edge of its bounding box
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*)

fun sierp_step (s : shape) : shape =

let val scaled = ScaleDown(s,(2,2))

val side = let val ((minx,_),(maxx,_)) = boundingbox scaled

in maxx - minx

end

val t1 = scaled

val t2 = Translate(scaled,(side,0))

val t3 = Translate(scaled,(side div 2,side))

in

Union(Union(t1,t2),t3)

end

fun sierp (n : int) : shape =

let

fun loop i =

case i of

0 => Rect((0,0),(512,512))

| _ => sierp_step (loop (i - 1))

in

Translate(loop n,(64,64))

end

sierp 7 renders like this:
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3 Functions as Arguments

Next, we’re going to talk about the thing that makes functional programming functional :

functions are values that can be passed to, and returned from, other functions

Consider the following two functions:
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fun double (x : int) : int = x * 2

fun doubAll (l : int list) : int list =

case l of

[] => []

| x :: xs => double x :: doubAll xs

fun raiseBy (l : int list , c : int) : int list =

case l of

[] => []

| x :: xs => (x + c) :: raiseBy (xs,c)

How do they differ? They both do something to each element of a list, but they do different
things (adding one, multiplying by c).

We want to write one function that expresses the pattern that is common to both of them:

fun map (f : int -> int , l : int list) : int list =

case l of

[] => []

| x :: xs => f x :: map (f , xs)

The idea with map is that it takes a function f : int -> int as an argument, which represents
what you are supposed to do to each element of the list.

int -> int is a type and can be used just like any other type in ML. In particular, a function
like map can take an argument of type int -> int; and, as we’ll see next time, a function can
return a function as a result.

For example, we can recover doubAll like this:

fun doubAll l = map (double , l)

If you substitute add1 into the body of map, you see that it results in basically the same code as
before.

Anonymous functions Another way to instantiate map is with an anonymous function, which
is written fn x => 2 * x:

fun doubAll l = map (fn x => 2 * x , l)

The idea is that fn x => 2 * x has type int -> int because assuming x:int, the body 2 * x : int.
To evaluate an anonymous function applied to an argument, you plug the value of the argument
in for the variable. E.g. (fn x => 2 * x) 3 |-> 2 * 3. Functions are values: The value of
fn x => x + (1 + 1) is fn x => x + (1 + 1). You don’t evaluate the body until you apply the
function.

doubAll can be defined anonymously too:

val doubAll : int list -> int list = fn l => map (fn x => 2 * x , l)
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Closures A somewhat tricky, but very very useful, fact is that anonymous functions can refer to
variables bound in the enclosing scope. This gets used when we instantiate map to get raiseBy:

fun raiseBy (l , c) = map (fn x => x + c , l)

The function fn x => x + c adds c to its argument, where c bound as the argument to raiseBy.
For example, in

raiseBy ( [1,2,3] , 2)

|-> map (fn x => x + 2 , [1,2,3])

|-> (fn x => x + 2) 1 :: map (fn x => x + 2 , [2,3])

|-> 1 + 2 :: map (fn x => x + 2 , [2,3])

|-> 3 :: map (fn x => x + 2 , [2,3])

|-> 3 :: (fn x => x + 2) 2 :: map (fn x => x + 2 , [3])

== 3 :: 4 :: map (fn x => x + 2 , [3])

== 3 :: 4 :: (fn x => x + 2) 3 :: map (fn x => x + 2 , [])

== 3 :: 4 :: 5 :: map (fn x => x + 2 , [])

== 3 :: 4 :: 5 :: []

the c gets specialized to 2. If you keep stepping, the function fn x => x + 2 gets applied to each
element of [1,2,3]. The important fact, which takes some getting used to, is that the function
fn x => x + 2 is dynamically generated : at run-time, we make up new functions, which do not
appear anywhere in the program’s source code!

Here’s a puzzle: what does

let val x = 3

val f = fn y => y + x

val x = 5

in

f 10

end

evaluate to?
Well, you know how to evaluate let: you evaluate the declarations in order, substituting as

you go. So, you get

let val x = 3

val f = fn y => y + 3

val x = 5

in

f 10

end

The fact that x is shadowed below is irrelevant; the result is 13. This is one of the reasons why
we’ve been teaching you the substitution model of evaluation all semester; it explains tricky puzzles
like this in a natural way.
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Polymorphism Another instance of the same pattern is:

fun showAll (l : int list) : string list =

case l of

[] => []

| x :: xs => Int.toString x :: showAll xs

However, this is not an instance of map, because it transforms an int list into a string list.
We can fix this by giving map a polymorphic type:

fun map (f : ’a -> ’b , l : ’a list ) : ’b list =

case l of

[] => []

| x :: xs => f x :: map (f , xs)

Then both doubAll and showAll are instances:

fun doubAll l = map (fn x => 2 * x , l)

fun showAll l = map (Int.toString , l)

map is an example of what is called a higher-order function, a function that takes a function as
an argument.

4 Reading: Polynomials

Note for Spring, 2012. The following is another example of a domain-specific datatype that we used
in past instances of the course.

If you type a query like (x+ 2)2 = x(x+ 4) + 4 into Wolfram Alpha, it will say “yes, (x+ 2)2 =
x(x + 4) + 4”. How does it do that?

4.1 A Datatype for Polynomials

To illustrate programming with domain-specific datatypes, we’re going to represent polynomials
and define an equality test for them. Remember from high school that a (univariate) polynomial
is something like x2 + 2x+ 1, built up using the variable x,constants, addition, and multiplication.

How should we represent polynomials?
One option is strings. The problem with this is that we’d then be dealing with the details of

strings like "x^2+2x+1" all over the code.
Another idea is to use coefficient lists, which we’ll talk about below. The problem with coefficient

lists is that they are too lossy: we want to maintain enough information about what the user typed
in that we can respond, “yes, (x+ 2)2 = x(x+ 4) + 4”. Both of these have the same coefficient list,
so we would say ‘yes, x4 + 4x + 4 = x2 + 4x + 4”.

A middle ground is to use a datatype to capture the important features of the problem domain,
abstracting away from the concrete textual representation, but preserving some of the structure of
the expression that was typed in. We can represent polynomails with a datatype as follows:
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datatype poly =

X

| K of int

| Plus of poly * poly

| Times of poly * poly

Unlike lists or trees, this is a domain-specific datatype: you’d only use it if you were programming
with polynomials.

Values are constructed by applying the datatype constructors. For example, x2 + 2x + 1 is
represented by

Plus(Times(X,X),Plus(Times(K 2 , X), K 1))

This represents the abstract syntax of an expression as a tree, whose nodes label an operation (plus,
times), and whose subtrees are the arguments to the operation.

Just like lists and trees, we can define functions using pattern matching and recursion. Here’s
how you apply a polynomial to an argument:

fun apply (p : poly , a : int) : int =

case p of

X => a

| K c => c

| Plus (p1 , p2) => apply (p1 , a) + apply (p2 , a)

| Times (p1 , p2) => apply (p1 , a) * apply (p2 , a)

For example, apply(Times(Plus(X, K 1), Plus(X, K 1)),4) computes to 25, as you would ex-
pect. There are four cases, corresponding to the four datatype constructors. There are two recursive
calls in the Plus and Times cases, corresponding to the two recursive references in the datatype
definition.

4.2 Equality

How would you test whether two polynomials are equal? First, what does “equality” even mean?
For example, you know that (x + 1)2 = x2 + 2x + 1. These two polynomials are not syntactically
the same—one starts with a Plus and the other a Mult. What we mean by equality is that they
agree on all arguments.

We can’t test this using just apply: we’d have to apply them to infinitely many arguments.
However, you learned how to do this in high school: put the polynomials in normal form

c0 + c1x + c2x
2 + c3x

3 + . . .

and then compare the coefficients.
What we’re going to do is to write a program to normalize a polynomial.
It is convenient to represent normal forms using a different type than poly, as lists of coefficients.

E.g. [c0,c1,c2,c3,...] means

c0 + c1x + c2x
2 + c3x

3 + . . .
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(* represent c_0 x^0 + c_1 x + c_2 x^2 + ...

by the list [c_0 , c_1 , c_2, ...]

empty list is 0

*)

type nf = int list

Now, we write

val norm : poly -> nf

Working backward, we’ll write norm as follows: we interpret each syntactic constructor as an
operation on normal forms.

fun norm (p : poly) : nf =

case p of

X => xnf

| K c => constnf c

| Plus (t1 , t2) => plusnf (norm t1 , norm t2)

| Times (t1 , t2) => timesnf (norm t1 , norm t2)

The operations we need are

val xnf : nf

val constnf : int -> nf

val plusnf : nf -> nf -> nf

val timesnf : nf -> nf -> nf

norm is a ring homomorphism: it interprets the operations of the syntactic ring given by the
datatype poly as the corresponding ring operations on normal forms.

Some of these are obvious:

val xnf : nf = [0,1]

fun constnf (c : int) : nf = [c]

For addition, we just add the coefficients, or return the longer polynomial if one is zero:

fun plusnf (n1 : nf , n2 : nf) : nf =

case (n1, n2) of

([] , n2) => n2

| (n1 , []) => n1

| (c1 :: cs1 , c2 :: cs2) => (c1 + c2) :: plusnf (cs1 , cs2)

Multiplication is trickier. You can write it out explicitly, though we didn’t do so in lecture.
However, there is a nicer way to do it once we have higher-order functions.

The idea is FOIL:
(x + y)(z + w) = xz + xw + yz + yw

That is, we take the first summand in the first polynomial times the second polynomial, then the
second summand in the first times the second. In general, it’s the first summand in the first times
the second, then the rest of the first times the second.

Here’s how we implement it:
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local

(* Purpose: multiply each number in the list by c’ *)

fun multAll (n : nf , c’ : int) : nf =

case n of

[] => []

| c :: cs => (c * c’) :: multAll (cs , c’)

(* Purpose: compute (c x^e) * n *)

fun mult1 (n : nf, c : int , e : int) : nf =

case e of

0 => multAll (n , c)

(* correct because c x^0 * n is c * n *)

| _ => 0 :: mult1 (n , c , e - 1)

(* correct because

(1) c x^e * n = x*(c x^(e-1) * n)

(2) for the coefficient list representation

x*n can be implemented by 0 :: n

*)

(* if n1 = [c0,c1,c2,...]

compute (c0x^e + c1 x^(e + 1) + ...) * n2

*)

fun times’ (n1 : nf , n2 : nf, e : int) =

case n1 of

[] => []

| c1 :: cs1 => plusnf (mult1 (n2 , c1 , e),

times’ (cs1 , n2 , e + 1))

(* i.e. (c1 x^e)*n2 + (c1 x^(e+1)*n2 + c2 x^(e+2)*n2 + ...) *)

in

fun timesnf (n1 : nf , n2 : nf) = times’ (n1 , n2 , 0)

end

This function is long, but not difficult, if we break it down: multAll just multiplies each thing
in a list by a coefficeint. mult1 multiplies a normal form by a single term cxe. Note that, for the
coefficient representation, x ∗ n is implemented by just consing on 0 and shifting everything else
down. times’ just keeps track of the current exponent, and does what we said above: multiple
the second polynomial by the first term, and then recursively by the rest. Finally, times starts the
exponent off at zero.

Caveat: the normal forms we have computed so far are not quite unique: [1,2,1,0] and
[1,2,1] both represent 1 + 2x + x2, though the former with a gratuitious 0x3. So to finish things
off, we’d need to remove trailing zeroes, which we’ll leave as an exercise.
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