15-122: Principles of Imperative Computation

Iliano Cervesato, Anne Kohlbrenner

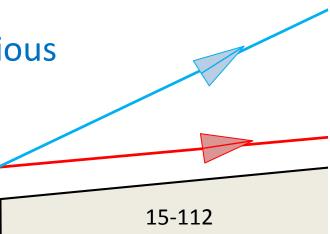
https://cs.cmu.edu/~15122

Overview

- Goals of this course
- Interactions

- Lectures, labs, recitations, office hours

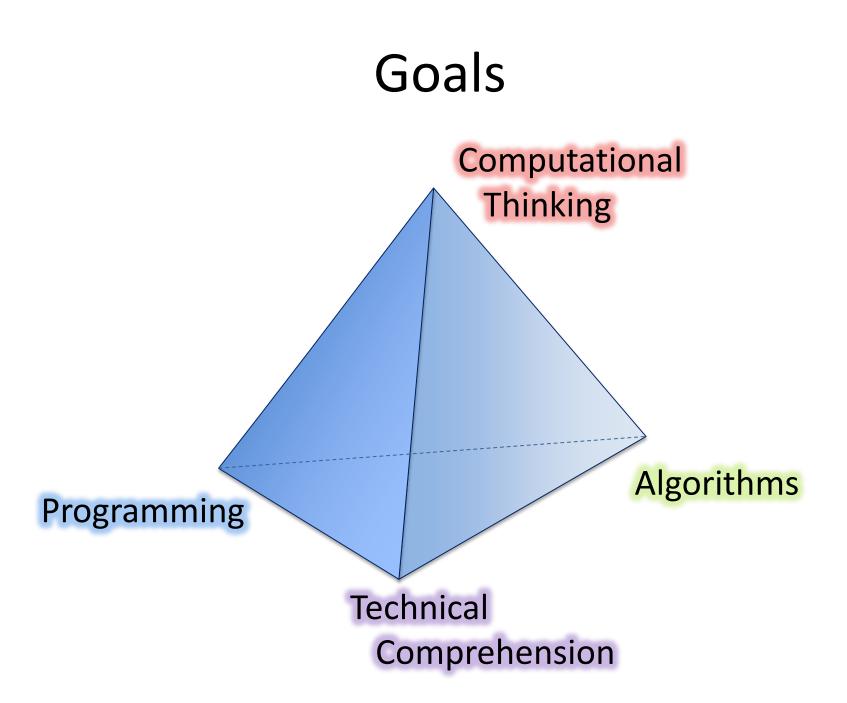
• Assessment


- Homework, exams, activities

• The course begins ...

Should you be taking this course?

- Yes!
 - it is a core requirement for your major
 - Computer Science is your passion
 - you developed applications independently
- No.


 you struggled in previous programming classes

What you will get out of 15-122

- Confidence to write small programs correctly

 up to a couple thousand lines of code
- Knowledge of lots data structures
 - and algorithms too
- (Some) experience with C
- Systematic approach to solving problems
- Good time management

Programming Skills

- Transforming algorithmic ideas into code
 - Code that works the first time around
 - Deliberate programming
 - ... well, nearly the first time around
 - Writing tests
- Imperative programming in C and CO
- Basic Unix skills

Algorithmic Knowhow

- Asymptotic complexity
 - time/space
 - worst case/average case/amortized analysis

– important classes: O(1), O(log n), O(n log n), O(n^k), ...

- Important ideas like *order* and *randomness*
- Lots of fundamental data structures (Psst... this is often what tech interviews test on!)

Computational Thinking

- From *programmer* to computer scientist
 - Systematic approach to solving a problem
 - Finding solutions that are *correct*
 - Finding solutions that are *efficient*

Technical Comprehension

- Learning to read technical specifications is an important skill
 - Problem statements will get longer
 - Dots will be further apart
 - + You will become more confident
 - + You will try more things on your own

The Big Picture

- Pre- or co-requisites
 - either 15-151 (Math Foundations for CS)
 - or 21-127 (Concepts of Mathematics)
- Counterpart
 - 15-150 (Principles of Functional Programming)
- Pre-requisite for
 - 15-213 (Introduction to Computer Systems)
 - 15-210 (Parallel and Sequential Data Structures and Algorithms)
 - 15-214 (Principles of Software System Construction)

Overview

- Goals of this course
- Interactions

- Lectures, recitations, office hours

• Assessment

– Homework, exams, activities

• The course begins ...

Lectures

- Tuesdays and Thursdays
- Please be here, please be active

ask and answer questions, pay attention

lecture notes, slides and online modules for review

- Laptops for note-taking only
 - In the back unless you can't see the board
 - Too distracting for other students
 - No surfing, email, games, homework, ...

Labs and Recitations

- Labs Monday (programming practice)
- Recitations Friday (conceptual practice)
- <u>Collaborative</u> problem solving
 Help others if you are done early!
- Attend the lab/recitation you're registered for

Getting-started Help

- 15-122 setup
 - Set up the C0 tools with Andrew Linux
 - Either setup lab
 - or laptop setup Office Hours
 - Wednesday, 6 to 8pm in TBA
 - or do it yourself:
 - "C0 at CMU" at <u>https://c0.cs.cmu.edu</u>
- Linux workshops
 - Learn useful Linux commands
 - Thursday 4:30 to 6:30 in TBA

Online Resources

- Course home page http://cs.cmu.edu/~15122
 - Schedule, calendar, contact info...
 - Lecture notes, slides, OLI modules
 - Links to all resources
- C0 home page <u>https://c0.cs.cmu.edu</u>
 Tutorial, reference, examples, binaries

Online communication

- **Diderot** for announcements, questions, and communication with course staff
 - Get help, help each other!
 - Make your posts public
 - unless discussing solutions
- Autolab and Gradescope for homework
- Grades from <u>course home page</u>
- Cluster Linux machines and SSH to shared machines for assignments

Help through the Semester

• Office hours

Calendar on <u>course web page</u>

- Bootcamps
- Student Academic Success Center
 - <u>Supplemental Instruction</u>
 - Peer Tutoring:
 - 1-on-1
 - drop-in

Overview

- Goals of this course
- Interactions

- Lectures, recitations, office hours

- Assessment
 - Homework, exams, activities
- The course begins ...

Assessment

- 50% Exams (2 midterms and a final)
- 45% Weekly Homework

Written 1 already Out. Due this Monday

- Written due Monday by 9pm ET on Gradescope
 - Download assignment from Diderot
 - No late days: 25% penalty if handed in by 9am Tuesday
 - ∞ submissions
- Programming due Thursdays 9pm ET on Autolab
 - Download assignments and starter code from Autolab
 - 3 late days, at most 1 per homework
 - Extensions only for emergencies
- 5% In-class activities and labs
 - In-class activities in lectures
 - Attend, make a good effort, get credit

Academic integrity

- Homework and exams *must be <u>your own</u> You are here to learn, not to get a grade*
- NOT OK: discussing hw answers, sharing code
- OK: clarifying course material, practice problems, blank assignments, study sessions, handed-back homework

If you make a mistake, come to us, don't let us come to you

Al Assistance

- It won't be of much help
 - generated code requires lot of TLC
 - our functions are too big
 - you won't get the practice to do well
 - in exams
 - in future classes

• Not allowed

How to do Well in this Course

- Do not stress over grades
- Participate
- Manage your time wisely
 Don't use late days in 1st half of course
- Start homework early
- Get all the help you need
 ask for help, tell us when you're having trouble
- Make time for fun

Overview

- Goals of this course
- Interactions

- Lectures, recitations, office hours

• Assessment

– Homework, exams, activities

• The course begins ...