Lecture 9
Stacks and Queues

15-122: Principles of Imperative Computation (Spring 2026)
Frank Pfenning, André Platzer, Rob Simmons

In this lecture we introduce queues and stacks as data structures, e.g., for
managing tasks. They follow similar principles of organizing the data.
Each provides simple functions for adding and removing elements. But
they differ in terms of the order in which the elements are removed. They
can be implemented easily as an abstract data type in CO, like the abstract
ssa_t type of self-sorting arrays that we discussed in the previous lec-
tures). Today we will not talk about the implementation of stacks and
queues; we will implement them in the next lecture.

Additional Resources

o Review slides (https://cs.cmu.edu/~15122/handouts/slides/review/09-stackqueue.
pdf)

e Code for this lecture (https://cs.cmu.edu/~15122/handouts/code/09- stackqueue.
tgz)

Relating this to our learning goals, we have

Computational Thinking: We illustrate the power of abstraction by con-
sidering new data structures from the client side.

Algorithms and Data Structures: Queues and stacks are two important
data structures to understand.

Programming: Use and design of interfaces.

1 The Stack Interface

Stacks are data structures that allow us to insert and remove items. They
operate like a stack of papers or books on our desk — we add new things
to the top of the stack to make the stack bigger, and remove items from the
top as well to make the stack smaller. This makes stacks a LIFO (Last In
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First Out) data structure — the data we have put in last is what we will get
out first.

Before we consider the implementation of a data structure it is helpful
to consider the interface. We then program against the specified interface.
Based on the description above, we require the following functions:

// typedef ______ * stack_t;

bool stack_empty(stack_t S) /* 0(1), check if stack empty x*/

/*@requires S != NULL; @x/;

stack_t stack_new() /* 0(1l), create new empty stack */

/*@ensures \result != NULL; @x/
/*@ensures stack_empty(\result); @x/;

void push(stack_t S, string x) /* 0(1), add item on top of stack x/

/*@requires S !'= NULL; @x/
/*@ensures !stack_empty(S); @x/;

string pop(stack_t S) /* 0(1l), remove item from top x*/

/*@requires S != NULL; @x/
/*@requires !stack_empty(S); @*/;

Like ssa_t, the abstract type stack_t is representing a mutable data struc-
ture, where pushing and popping modifies the contents of the stack. There-
fore, we will again be explicit in the interface that stacks are pointers to
allocated memory, though we won'’t be explicit about what they point to.

We want the creation of a new (empty) stack as well as pushing and
popping an item all to be constant-time operations, as indicated by O(1).
Furthermore, pop is only possible on non-empty stacks. This is a funda-
mental aspect of the interface to a stack, that a client can only read data
from a non-empty stack. So we include this as a @requires contract in the
interface.

One thing to observe is that there’s nothing special about the string
type here. It would be nice to have a data structure that was generic, and
able to work with strings, integers, arrays, and so on, but we will discuss
that possibility later.
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2 Using the Stack Interface

We play through some simple examples to illustrate the idea of a stack and
how to use the interface above. We write a stack as

x17$27"'7xn

where z; is the bottom of the stack and x,, is the top of the stack. We push
elements on the top and also pop them from the top. If we're feeling artis-
tic, we can draw stacks with arrows to emphasize that we’re pushing and

popping from the top:
Xp Xy vee Xy Xy ‘%

Here is a more complex example, showing the effect of several steps
on the state of assignable variables and allocated memory, where the stack
data structure resides:

Command Assignable Variables Allocated memory

]

I

I

stack S = stack new(); :
I
I

B
[
|
"hello"’ " ou" |S

push (S, "hello");

push (s, "you");

1]
f

string x = pop(S);

|
|
e e
paen s, e [ "hello” |
x| "you" |s[ e f———{ "hello", "adar &
x = pop(s); !
[ s [F— e |3

Remember that we think of the assignable S like a pointer or an array: it
is not literally an arrow but a number representing the address of the in-
memory representation of the stack.

3 Abstraction

An important point about formulating a precise interface to a data structure
like a stack is to achieve abstraction. This means that as a client of the data
structure we can only use the functions in the interface. In particular, we
are not permitted to use or even know about details of the implementation
of stacks.
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Let’s consider an example of a client-side program. We would like to
examine the element at the top of the stack without removing it from the
stack. Such a function would have the declaration

string peek(stack_t S)
/*@requires S !'= NULL && !'stack_empty(S); @x/ ;

If we knew how stacks were implemented, we might be able to implement,
as clients of the stack data structure, something like this:

string peek(stack_t S)
//@requires is_stack(S) && !'stack_empty(S);
{

return S->data[S->top];

}

However, we don’t know how stacks are implemented, so we cannot do this. As
clients of the stack data structure, we only know about the functions pro-
vided by the interface. However, it is possible to implement the peek oper-
ation correctly without violating the abstraction!

The idea is that we pop the top element off the stack, remember it in a
temporary variable, and then push it back onto the stack before we return.

string peek(stack_t S)
//@requires S != NULL && 'stack_empty(S);
{

string x = pop(S);

push(S, x);

return x;

}

Depending on the implementation of stacks, this might be less efficient
than a library-side implementation of peek. However, as long as push and
pop are still a constant-time operations, peek will still be constant time

O(1)).

4 Computing the Size of a Stack

Let’s exercise our data structure once more by considering how to imple-
ment a function that returns the size of a stack, using only the interface. In
the next lecture we’ll consider how to do this on the library’s side, exploit-
ing the data representation.

Here’s the signature of a client-side implementation.

int stack_size(stack_t S)
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/*@requires S !'= NULL; @/
/*@ensures \result >= 0; @/ ;
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We encourage you to consider this problem and program it before you
read on.

First we reassure ourselves that it will not be a simple operation. We
do not have access to the array (in fact, as the client, we cannot know that
there is an array), so the only thing we can do is pop all the elements off the
stack. This can be accomplished with a while-loop that finishes as soon as
the stack is empty.

int stack_size(stack_t S)
//@requires S !'= NULL;
//@ensures \result >= 0;
{
int count = 0;
while (!stack_empty(S)) {
pop(S);
count++;
}

return count;

}

However, this function has a big problem: in order to compute the size
we have to destroy the stack! Clearly, there may be situations where we
would like to know the number of elements in a stack without deleting all
of its elements. Fortunately, we can use the idea from the peek function in
amplified form: we maintain a new temporary stack T' to hold the elements
we pop from S. Once we are done counting, we push them back onto S to
repair the damage.
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int stack_size(stack_t S)
//@requires S !'= NULL;
//@ensures \result >= 0;
{
stack_t T stack_new();
int count = 0;
while (!stack_empty(S)) {
push(T, pop(S));
count++;
}
while (!stack_empty(T)) {
push(S, pop(T));
}

return count;

}

The complexity of this function is clearly O(n), where n is the number of
elements in the stack S, since we traverse each while loop n times, and
perform a constant number of operations in the body of both loops. For
that, we need to know that push and pop are constant time (O(1)).

A library-side implementation of stack_size can be done in O(1), but
we won’t consider that today:.

5 The Queue Interface

A queue is a data structure where we add elements at the back and remove
elements from the front. In that way a queue is like “waiting in line”: the
first one to be added to the queue will be the first one to be removed from
the queue. This is also called a FIFO (First In First Out) data structure.
Queues are common in many applications. For example, when we read a
book from a file, it would be natural to store the words in a queue so that
when we are finished reading the file the words are in the order they appear
in the book. Another common example are buffers for network communi-
cation that temporarily store packets of data arriving on a network port.
Generally speaking, we want to process them in the order they arrive.
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Here is our interface:

// typedef ______ * queue_t;

bool queue_empty(queue_t Q) /*x 0(1l) =/
/*@requires Q '= NULL; @x/;

queue_t queue_new() /* 0(1) =/
/*@ensures \result != NULL; @x/
/*@ensures queue_empty(\result); @x/;

void enq(queue_t Q, string e) /% 0(1) */
/*@requires Q '= NULL; @x/;

string deq(queue_t Q) /* 0(1) */
/*@requires Q !'= NULL; @/
/*@requires !queue_empty(Q); @/ ;

Dequeuing is only possible on non-empty queues, which we indicate by a
@requires contract in the interface.

Again, we can write out this interface without committing to an imple-
mentation of queues. In particular, the type queue_t remains abstract in the
sense that we have not given its definition. This is important so that differ-
ent implementations of the functions in this interface can choose different
representations. Clients of this data structure should not care about the in-
ternals of the implementation. In fact, they should not be allowed to access
them at all and operate on queues only through the functions in this inter-
face. Some languages with strong module systems enforce such abstraction
rigorously. In C, it is mostly a matter of adhering to conventions.

6 Using the Queue Interface

We play through some simple examples to illustrate the idea of a queue
and how to use the interface above. We write a queue as

T1,X2;5-..,Tn

where z; is the front of the queue and x,, is the back of the queue. We en-
queue elements in the back and dequeue them from the front. If we want to
emphasize this, we can draw queues like this:

<j:|‘ X1 X2 oo Xppps Xy K:
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Here’s a trace of the queues in action:

Command Assignable Variables Allocated memory

]
[ e
JIENE i ]

queue t Q = queue new();

eng(Q, ™oh");

{J

eng(Q, ™hi™);

string x = deq(Q):

0

enq(Q, "there™):;

|
Nt Sm
x = deq(Q); |
Exdi

"hi", "there" K:

enere

7 Copying a Queue Using Its Interface

Suppose we have a queue () and want to obtain a copy of it. That is, we
want to create a new queue C' and implement an algorithm that will make
sure that () and C have the same elements and in the same order. How can
we do that? Before you read on, see if you can figure it out for yourself.
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The first thing to note is that
queue_t C = Q;

will not have the effect of copying the queue () into a new queue C. This
assignment makes C and @ aliases, so if we change one of the two, for ex-
ample enqueue an element into C, then the other queue will have changed
as well. Just as for the case of stack size, we need to implement a function
for copying the data.

The queue interface provides functions that allow us to dequeue data
from the queue, which we can do as long as the queue is not empty. So we
create a new queue C. Then we read all data from queue () and put it into
the new queue C.

queue_t C = queue_new();

while (!queue_empty(Q)) {
enq(C, deq(Q));

}

//@assert queue_empty(Q);

Now the new queue C' will contain all data that was previously in @), so C
is a copy of what used to be in ). But there is a problem with this approach.
Before you read on, can you find out which problem?
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Queue C now is a copy of what used to be in () before we started copy-
ing. But our copying process was destructive! By dequeuing all elements
from @ to put them into C, @ has now become empty. In fact, our assertion
at the end of the above loop even indicated queue_empty(Q). So what we
need to do is put all data back into () when we are done copying it all into
C'. But where do we get it from? We could read it from the copy C to put
it back into (), but, after that, the copy C would be empty, so we are back
to where we started from. Can you figure out how to copy all data into C
and make sure that it also ends up in Q? Before you read on, try to find a
solution for yourself.
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We could try to enqueue all data that we have read from () back into @
before putting it into C.

queue_t C = queue_new();

while (!queue_empty(Q)) {
string s = deq(Q);
enq(Q, s);
enq(C, s);

}

//@assert queue_empty(Q);

But there is something very fundamentally wrong with this idea. Can you
figure it out?
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The problem with the above attempt is that the loop will never termi-
nate unless () is empty to begin with. For every element that the loop body
dequeues from (@), it enqueues one element back into ¢). That way, @ will
always have the same number of elements and will never become empty.
Therefore, we must go back to our original strategy and first read all ele-
ments from (. But instead of putting them into C, we will put them into a
third queue T for temporary storage. Then we will read all elements from
the temporary storage 7" and enqueue them into both the copy C' and back
into the original queue (). At the end of this process, the temporary queue
T will be empty, which is fine, because we will not need it any longer. But
both the copy C and the original queue @ will be replenished with all the
elements that () had originally. And C will be a copy of Q.

queue_t queue_copy(queue_t Q)
//@requires Q '= NULL;
//@ensures \result != NULL;
{
queue_t T = queue_new();
while (!'queue_empty(Q)) {
enq(T, deq(Q));
}
//@assert queue_empty(Q);
queue_t C = queue_new();
while (!queue_empty(T)) {
string s = deq(T);
enq(Q, s);
enq(C, s);
}
//@assert queue_empty(T);
return C;

}

For example, when queue_copy returns, neither C' nor @ will be empty.
Except if () was empty to begin with, in which case both C' and @ will still
be empty in the end.
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8 Exercises

Exercise 1 (sample solution on page 16). -10ex]interface, stack The following
code is intended to return an exact copy of a stack. It falls short of this goal however.
What's wrong with the code?

stack_t stack_copy(stack_t S)

//@requires S != NULL;

{
stack_t tmp = stack_new(); // temporary stack
stack_t copy = stack_new(); // stack to be returned

// move all elements of S into tmp
while (!stack_empty(S)) {

string x = pop(S);

push(copy, x);

push(tmp, x);
}

while (!stack_empty(tmp))
push(S, pop(tmp));

return copy;

}

Implement a correct version of stack_copy that does return a copy of its input
stack.

Exercise 2 (sample solution on page 16). -10ex]interface, stack Implement the
client-side function

stack_t stack_reverse(stack_t S);

that destructively returns a stack with the same elements as its input stack but in
reverse order. The input stack shall be empty when the call returns.

Exercise 3 (sample solution on page 16). -10ex/interface, stack, sorting Imple-
ment the client-side functions

bool stack_sorted_ascending(stack_t S);
bool stack_sorted_descending(stack_t S);

The first returns true if the items in stack S are sorted in ascending order, with
the largest item at the top and the smallest at the bottom, and false otherwise.
Similarly, the second function checks that its arqument is sorted in descending
order. For simplicity, you may assume that the stack items have type int rather
than string.
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Your code may use temporary stacks but no other data structures. Besides the
functions provided by the stack interface (adapted to items of type int), you may
use any function on stacks defined in this lecture or in earlier exercises..

Exercise 4 (sample solution on page 17). -10ex]interface, stack, sorting Imple-
ment the function

void stack_sort(stack_t S);

that sorts its input stack. The resulting stack should be sorted in ascending order,
with the largest item at the top and the smallest at the bottom. For simplicity, you
may assume that the stack items have type int rather than string.

Your code may use temporary stacks but no other data structures. Besides the
functions provided by the stack interface (adapted to items of type int), you may
use any function on stacks defined in this lecture or in earlier exercises.

Hint: an effective way to solve this exercise is carefully consider what loop
invariants should hold at various points.

Exercise 5 (sample solution on page 18). -10ex]aliasing, interface, queue Im-
plement the client-side function

int queue_sum(queue_t Q);

that takes as input a queue Q of integers and returns their sum (or 0 if the queue is
empty). Upon returning, the input queue should contain the same elements in the
same order as when it was called.

Exercise 6 (sample solution on page 19). -10ex/interface, stack Give a recur-
sive implementation of the client-side function

int stack_size(stack_t S);

that takes as input a stack S and returns the number of elements in it. Upon
returning, the input stack should contain the same elements in the same order as
when it was called.
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Sample Solutions

Solution of exercise 1 The returned copy of the input stack is in reverse
order. Here’s a fixed version:

stack_t stack_copy(stack_t S)

//@requires S !'= NULL;

{
stack_t tmp = stack_new(); // temporary stack
stack_t copy = stack_new(); // stack to be returned

// move all elements of S into tmp
// -- they will be in the reverse order
while (!stack_empty(S))
push(tmp, pop(S));
//@assert stack_empty(S);

// move them back to both S and to copy
while (!stack_empty(tmp)) {
string x = pop(tmp);
push(S, x); // restore x onto S
push(copy, x); // put a copy of x onto copy
}
//@assert stack_empty(tmp);

return copy;

}

Solution of exercise 2 The code for stack_reverse is as follows:

stack_t stack_reverse(stack_t S)
//@requires S !'= NULL;
//@ensures stack_empty(S);
{
stack_t rev = stack_new();
while (!stack_empty(S))
push(rev, pop(S));
//@assert stack_empty(S);
return rev;

}

Solution of exercise 3 The main challenge in writing these functions is that
we want the input stack to remain unchanged no matter what is returned.
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An easy way to do so is to borrow the function stack_copy from a previous
exercise to make a copy of the input stack. Then, we can repeatedly pop and
compare elements until we either we empty it out or we find elements out
of order.

bool stack sorted_ascending(stack_t S)
//@requires S !'= NULL;
{
if (stack_empty(S)) // the empty stack is sorted
return true;

//@assert !stack_empty(S);
stack_t tmp = stack_copy(S); // make a copy of S
//@assert !stack_empty(tmp);

int n = pop(tmp);
while (!stack_empty(tmp)) {
int m = pop(tmp);

if (!(n > m)) return false; // tmp is not in ascending order

n=m;
}
//@assert stack_empty(tmp);
return true;
}
stack_sorted_descending is identical except for the test ! (n < m) on
line 14.

Solution of exercise 4 The following algorithm relies on a temporary stack
tmp which will contain the top elements of the input stack S sorted in as-
cending order. For every item nin S, we compare it to the top of tmp: if it is
smaller we push it on tmp. Otherwise, we repeatedly pop items from tmp
onto S until either we find an item that is larger than or equal to n or tmp is
empty. Note that the same item may be shuffled between S and tmp multi-
ple times. Once all elements of S have been moved to tmp (where they will
occur in descending order), we simply move them back onto S. The stack
discipline ensures that they will appear in ascending order.
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void stack_sort(stack_t S)

//@requires S !'= NULL;

{
stack_t tmp = stack_new(); // auxiliary stack
//@assert stack_sorted_ascending(tmp); // invariant

while (!stack_empty(S))
//@loop_invariant stack_sorted_ascending(tmp);

{
int n = pop(S);

// Move all items in tmp smaller than n back onto S
while (!stack_empty(tmp) && peek(tmp) < n) {
push(S, pop(tmp));
}
// Push n onto tmp: tmp remains sorted
push(tmp, n);
}
//@assert stack_empty(S);

// Move them back to S
while (!stack_empty(tmp))
//@loop_invariant stack_sorted_ascending(tmp);
//@loop_invariant stack_sorted_descending(S);
{
push(S, pop(tmp));
}
}

We used the functions stack_sorted_ascending and stack_sorted_descending

from the previous exercise to write very precise contracts loop invariants
for this function. As written, this code will now compile however. The rea-
son is that these functions write to allocated memory — they are impure.
In general this is problematic because a program may produce different
outcome depending on whether it is compiled with or without the -d flag.
There is no way to write pure versions of these functions based on the given
interface of our stack library. An extended stack library may however ex-
port pure versions.

Solution of exercise 5 The following is an implementation of queue_sum:
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int queue_sum(queue_t Q)
//@requires Q '= NULL;
{

int sum

= 0;
queue_t T =

queue_new();

while (!'queue_empty(Q)) {
int x = deq(Q);
sum += X;
enq(T, x);

}

while (!queue_empty(T))
enq(Q, deq(T));

return sum;

}
Solution of exercise 6 The following is a recursive implementation of stack_size:

int stack_size(stack_t S)
//@requires S !'= NULL;
//@ensures \result >= 0;
{
if (stack_empty(S)) // Base case
return 0;

int data = pop(S); // Recursive case
int n = stack_size(S);
push(S, data);

return n+l;
}

Observe that it is much shorter than the iterative version seen in Sec-
tion 4. In particular, it does not make use of a temporary stack to hold the
data elements of S while traversing it. Each call to stack_size “remem-
bers” the data item it pops, so when coming back from the recursive call it
can be pushed back onto S.
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