
Week 9: Agenda

•Dictionaries and Sets, Efficiency
• Code Tracing
• Free Response

•Course admin
• What’s next?
• Homework 8

•Recursion
• Let’s play a game
• Example

Code Tracing: Spring 2021 (Exam 2)

Dictionaries: mostVisits

Dictionaries: mostVisits

•Many, many, possible solutions
• Usually, building a dictionary like this would help (a lot)

• Then find the maximum value and return the corresponding key (see how we did it
in mostFrequentWord)

Student Visit Count (number of days)

Layla 4

Peter 2

Otto 3

Yusuf 3

… …

Fluke Numbers

Efficiency

Efficiency

O(1)

O(1)

O(1)

O(n)

O(n)

O(1)

O(1)

What’s the maximum
length of result?

O(n)
O(1)
O(1)

O(1)

O(n^2)

O(n)

What’s next?

HW#9 Due

Project Proposals Due

HW#8 Due W9 Recursion

W10 OOP (Term Project Intro)

W11 Exam 2 (Sunday Nov 5th), OOP

W12 Searching and Sorting / Hashing

W13 …
W14 …

Quiz #8

Term Project Season Starts!

Start discussing your
project ideas with your

mentor!

Quiz #9

Game time! Pretend to be a Python function

•You will be a Python function

•When you are called, you come to the front, next in line, and receive
the parameters in a green paper

•When you return, you provide the returning value (there’s always a
return value), in a red paper

•When you return, come back to the workers’ corner

Let’s try

•Warmup:

•One volunteer
• Contributes to your participation grade:

Another (more complex) function

Let’s try
•This is the function:

“one” 2

“onetwelve” 4

Let’s now try this:

What do you notice?

“one”

“ne” 1

“e” 1

“” 0

2

A bad try

What do you notice?

“one”

“ne”

“e”

“”

“”

“” ...

Never ends!

Recursion: generic form

onlyVowels(s)

•Write a recursive function that, given a string s, returns the vowels
contained in s in the same order (as a string):

•onlyVowels("hello") == "eo"
•onlyVowels("bcdfg") == ""
•onlyVowels("aaaaa") == "aaaaa"

Forward Recursion vs. Tail Recursion

In tail recursion:
• A recursive function is tail-recursive if all recursive

calls are the last thing that the function does

In forward recursion:
• Call the function recursively on all the sub-problems
• then build the final result from the partial results.

Using an accumulator

• Parameter that contains data processed by previous recursive calls
• If can be used to store partial solutions
• Normally used to implement tail-recursion
• Useful when the solution is a mutable type (e.g., lists, dictionaries)

“one”

“ne” “oe”

“e” “oe”

“” “oe”

“oe”

“o”

“o”

“oe”

DigitSum(n)

• Return the sum of all digits in n
• Do not use for or while loops

recSumConsecutivePairs(L)

interleave(A, B)

Recursive function that interleaves two lists A and B

Easy case: assume len(list1) == len(list2)

Example:

interleave([1,2,3], [4,5,6]) == [1,4,2,5,3,6]

interleave([1], [2]) == [1,2]

interleave(['a','c'], ['b', 'd']) == ['a', 'b', 'c', 'd']

interleave(A, B)

Recursive function that interleaves two lists A and B

Easy case: do not assume len(list1) == len(list2)

Example:

interleave([1,2], [4,5,6]) == [1,4,2,5,6]

interleave([1], []) == [1]

interleave(['a','b','c'], ['d']) == ['a', 'd','b','c']

Debugging

• Add “default” argument d = depth of the recursion
• Use the depth to add an offset to the print statements

Solving problems with recursion

•Consider the generic form

•How can you split the problem?
• How would the next recursive call look like?

•What’s the return type?
• Usually, it is the same for the base case and the recursive case

•Base case

•Recursive case (assume that the recursive call works)

Unlocking the power of recursion

Tree Recursion: When you make a recursive call more than once in your
recursive case

Why?

- Some problems are more easily solved by tree recursion.
- Brute forcing solutions (Backtracking)

Some Examples: hasSublistSum

hasSublistSum(L, s)

Write the function hasSublistSum(L, s) that takes a list of integers
L and an integer s, and returns True if there exist elements in L that
sum to s. Otherwise, the function returns False.

hasSublistSum([42,15,-1,12],53)

hasSublistSum([15,-1,12],11)

Use 42

hasSublistSum([-1,12],-4)

Use 15

hasSublistSum([12],-3)

Use -1

hasSublistSum([],-15)

Use 12

hasSublistSum([],-3)

False Do Not Use 12

False

False

False

hasSublistSum([12],-4)

False

hasSublistSum([],-16) hasSublistSum([],-4) hasSublistSum([],0)

hasSublistSum([-1,12],11)

hasSublistSum([12],12)

False

False
Do not Use -1

Use 12 Do Not Use 12

Do Not Use 15

Use -1

Use 12
Tru

e

True

True

True

True

Example A: getHiLo(L)

•Write the function getHiLo(L) that receives a list of integers L and
returns a tuple (a,b) where a is the lowest number and b is the highest.
You can assume len(L) > 0

•Examples:
• getHiLo([1,2,3,4,5]) == (1,5)
• getHiLo([42,4,5,-6]) == (-6,42)
• getHiLo([42]) == (42,42)

Example B: indexMap(L)

•Write the function indexMap(L) that takes a 1D list L and returns a
dictionary that maps each value in L to a set of the indices in L where that
value occurs. For example:

•indexMap([5, 6, 5]) == { 5:{0,2}, 6:{1} }
•indexMap([9, 6, 3, 6, 9]) == { 3:{2}, 6:{1,3}, 9:{0,4} }

