Week 9: Agenda

* Dictionaries and Sets, Efficiency
* Code Tracing
* Free Response

e Course admin
e What’s next?
e Homework 8

* Recursion
* Let’s play a game
* Example

Code Tracing: Spring 2021 (Exam 2)

def f(u):
¥ 8 In O
print (£'8: {u[8]}')
del ul[8]
return u

def ct(L):
s = set(L)
d = dict()
far ¥ in L:
d[v] = d.get(v,v) + min(s)
s.add(d[v])

u = f(d)

print(f's = {s}')
print(f'd = {d}')
print(f'u = {u}')

ct([8,4,8,4,2])

Dictionaries: mostVisits

Write the function mostVisits(logbook) that is given a dictionary mapping days of the
week to the list of students who visited CMU-Q on that day, and returns a set that contains
the student (or students, if there is a tie) who visited on the most number of days that week.
There is one caveat: The log system might register a visit multiple times on the same day,
therefore one name might appear multiple times in a list, but it should be counted only once
per day.

For example, given the dictionary:

{ "Sunday" : ["Layla", "Peter", "Otto", "Amir"],

"Monday" : ["Yusuf", "Layla", “Bernard", “"Joha"];

"Tuesday" : ["Yusuf", "Peter", "Otto", "Layla", "Salma", "Utto"],
"Wednesday" : ["Otto", "Layla", "Yusuf", "Otto"] }

The function should return the set {"Layla"}, since Layla visited the CMU-Q building four
days (Otto entered the building more times, but only visited on three different days).

If Layla had not visited the building on Monday, then it would return {"Layla", "Otto", "Yusuf"},
since each student would have visited exactly three days.

Dictionaries: mostVisits

* Many, many, possible solutions
* Usually, building a dictionary like this would help (a lot)

Layla 4
Peter 2
Otto 3
Yusuf 3

* Then find the maximum value and return the corresponding key (see how we did it
in mostFrequentiord)

Fluke Numbers

(15 points) Free Response: Fluke Numbers A fluke number (coined term) is an integer
that has a frequency in the list equal to its value

Write the function findFlukeNumbers (L)) that is given a list L of objects (not necessarily

integers). The function should return a set containing all the fluke numbers in the list. Your
solution should run in O(N) time.

For example,
assert (findFlukeNumbers([1,'a','a',[4], 3, False, 3, 3]) == {1, 3})

assert (findFlukeNumbers([1, 2, 2, 3, 3, 3, 4]) == {1, 2, 3})
assert (findFlukeNumbers ([0, False, 'hello']) == set())

import string

def bigOh(s):

result = ""
foY ¢ in s

s is a string, N = len(s)

for ¢ in string.ascii_lowercase:

if s.count(c) ==
result += c
return c

result.count(c):

—————

def

bigOh(L): # L 1= @a list,

d = dict()

Iar 1 in L
dfi] = 1

return len(d)

N = len(L)

def

bigOh(L): # L is a list,

n = len(L)
for i in range(n**2):
L.append(L.count(i))

N = len(L)

Efficiency

What’s the maximum
length of result?

import string
def bigOh(s): # s is a string, N = len(s)

result = "" 9!%[-
for c in s: O(n) _ O 2\
for c in string.ascii_lowercase: o(1) _ (71' y
if s.count(c) == result.count(c): Eﬁnl_
result += c GKlL_
return c Qull_
def bigOh(L): # L is a list, N = len(L)
d = dict() o(1)
for i in L: Ofn)_ O(Tl)
dlil = i o).
return len(d) o(1)_
def bigOh(L): # L is a list, N = len(L)
n = len(L) Eﬁll- :3\
for i in range(n**2): O(n"2) (i)(??; i
L.append(L.count(i)) O(n) _

What’s next?

W9 Recursion
W10 OOP (Term Project Intro)

.
W11 Exam 2 (Sunday Nov 5th), OOP

W12 Searching and Sorting / Hashing
W13
W14

Start discussing your
project ideas with your

mentor!

Game time! Pretend to be a Python function

* You will be a Python function

* When you are called, you come to the front, next in line, and receive
the parameters in a green paper

* When you return, you provide the returning value (there’s always a

return value), in a red paper -

* When you return, come back to the workers’ corner

Let’s try

* Warmup:
1 def myMysteryFunction(s):
2 value = ©
3 if len(s) > @ and s[@] in "aeiou":
4 value = 1
5 return value

* One volunteer
* Contributes to your participation grade:

Another (more complex) function

def myMysteryFunction (s) :
value = 0
for ¢ 1n s:
if ¢ in "aeiou':
value += 1
return value

Let’s try

* This is the function:

def myMysteryFunction (s):
value = 0
for ¢ in s:
if ¢ in "aeiou":
value += 1
return value

Gy U W NP

“onetwelve”

Let’s now try this:

def myRecursiveFunction(s):

if len(s) == 0:
return 0

else:
value = myRecursiveFunction(s[1:])
if s[@] in "aeilou":

value += 1

return value

What do you notice?

A bad try

def myRecursiveFunction(s):
value = myRecursiveFunction(s[1l:])
if s[@] in "aeiou":
value += 1
return value

What do you notice?

Never ends!

Recursion: generic form

def recursiveFunction():
if (this 1s the base case):
no recursion allowed here!
do something non-recursive
else:
this 1s the recursive case!

do something recursive

onlyVowels(s)

* Write a recursive function that, given a string s, returns the vowels
contained in s in the same order (as a string):

*onlyVowels("hello") "eo"
*onlyVowels("bcdfg") "
aII)

*onlyVowels("aaaa

"aaaaa'"

def recursiveFunction
if (this is the base case
no recursion allowed here!
do something non-recursive
else
this is the recursive case!

do something recursive

Forward Recursion vs. Tail Recursion

In forward recursion: In tail recursion:
e Call the function recursively on all the sub-problems * A recursive function is tail-recursive if all recursive
e then build the final result from the partial results. calls are the last thing that the function does
def onlyVowels(s): def onlyVowelsHelper(s, currentVowels):
if len(s) == 0: if len(s) == 0:
return "" return currentVowels
else: if s[0] in 'aeiou':
othervowels = onlyVowels(s[1:]) currentVowels += s[0]
if s[@] in "aeiou": return onlyVowelsHelper(s[1l:], currentVowels)
return s[0] + othervowels
else: def onlyVowels(s):

return othervowels return onlyVowelsHelper(s, "")

Using an accumulator

Parameter that contains data processed by previous recursive calls
If can be used to store partial solutions

Normally used to implement tail-recursion

Useful when the solution is a mutable type (e.g., lists, dictionaries)

DigitSum(n)

. Return the sum of all digits in n
. Do not use for orwhile loops

recSumConsecutivePairs(L)

Write the function recSumConsecutivePairs (L) that returns a new list with the sums
consecutive pairs of elements in L, in the corresponding order. If there are no consecutive
pairs, it should return an empty list.

For instance,

recSumConsecutivePairs([3,2,5,1]) == [5,7,6] # 3+2, 2+5, 5+1
recSumConsecutivePairs([-1,4,10,2,0]) == [3,14,12,2] # -1+4, 4+10, 10+2, 2+0
recSumConsecutivePairs([1]) == [] # no consecutive pairs
recSumConsecutivePairs([]) == [] # no consecutive pairs

Your solution must use recursion. If you use any loops, comprehensions, or
iterative functions, you will receive no points on this problem.

interleave(A, B)

Recursive function that interleaves two lists A and B
Easy case: assume len(1listl) == len(list2)

Example:

interleave([1,2,3], [4,5,6]) == [1,4,2,5,3,6]
interleave([1], [2]) == [1,2]
interleave(['a','c'], ['b', 'd']) == ["'a', 'b'’

interleave(A, B)

Recursive function that interleaves two lists A and B

Easy case: do not assume len(listl) == len(list2)
Example:
interleave([1,2], [4,5,6]) == [1,4,2,5,6]

interleave(
interleave(

1], [1) == [1]

'a','b','c'], [Idl]) == ["a’,

ldl,lbI,lcl

Debugging

. Add “default” argument d = depth of the recursion
. Use the depth to add an offset to the print statements

Solving problems with recursion

e Consider the generic form

* How can you split the problem?
* How would the next recursive call look like?

* What's the return type?
» Usually, it is the same for the base case and the recursive case

* Base case
* Recursive case (assume that the recursive call works)

Unlocking the power of recursion

Tree Recursion: When you make a recursive call more than once in your
recursive case

Why?

- Some problems are more easily solved by tree recursion.
- Brute forcing solutions (Backtracking)

Some Examples: hasSublistSum

hasSublistSum(L, s)

Write the function hasSublistSum(L, s) that takes a list of integers
L and an integer s, and returns True if there exist elements in L that
sum to s. Otherwise, the function returns False.

—_ hassublistsum([42,15,-1,12],53)

Use 42

hasSublistSum([15,-1,12],11)

Use 15
o Not Use 15

hasSublistSum([-1,12],-4)
hasSublistSum([-1,12],11)

Use -1 Do not Use -1
Use -1

hasSublistSum([12],12)

hasSublistSum([12],-3) hasSublistSum([12],-4)

Use 12 Do Not Use 12 Use 12 Do Not Use 12 Use 12

hasSublistSum([],-15) hasSublistSum([],-3) hasSublistSum([],-16) hasSublistSum([],-4) hasSublistSum([],0)

Example A: getHiLo(L)

* Write the function getHiLo(L) that receives a list of integers L and
returns a tuple (a, b) where a is the lowest number and b is the highest.
You can assume len(L) > ©

* Examples:
e getHilo([1,2,3,4,5]) == (1,5)
e getHilLo([42,4,5,-6]) == (-6,42)
e getHiLo([42]) == (42, 42)

Example B: indexMap (L)

* Write the function indexMap (L) thattakes a 1D list L and returns a

dictionary that maps each value in L to a set of the indices in L where that
value occurs. For example:

indexMap([5, 6, 5]) == { 5:{0,2}, 6:{1} }
indexMap([9, 6, 3, 6, 9]) == { 3:{2}, 6:{1,3}, 9:{0,4} }

