
Week 8: Agenda

•Course admin
• Homework 6
• Gradebook is up! It will show your mid-semester grades

• Quizzes
• Quiz 1: 1%
• After Quiz 1 (up to quiz 6): 9%
• Quiz 4: optional
• Quiz 6: It can be replaced by Quiz 11

• Exam 1: 50%
• Homework: 35% (20% + TP) CS academy problems not included
• Participation: 5% (Mentor Meetings 2% / CS Academy: 3%) not included
• (60%, 65%) rule
• No Better-late-than-never (not yet)

• Mid-semester grades

•What’s next?
• This week: Dictionaries & Sets

What’s next?

What’s next?

Quiz #7 - ListsHW#7 Due

HW#9 Due

Project Proposals Due

HW#8 Due

W8 Dictionaries, Sets, Efficiency

W9 Recursion

W10 OOP (Term Project Intro)

W11 Exam 2 (Thu, March 27th), OOP

W12 Searching and Sorting / Hashing

W13 Hashing

W14 …

Quiz #8 - Dict. Sets, Eff

Term Project Season Starts!

Quiz #9 - OOP

Dictionaries

•Why? (Functional)
• Store relations key

value

▪ In all the examples, a unique label (key) can be associated to a (more or less complex) piece of data (the value)

▪ This motivates the choice of a dictionary data structure to represent and manipulate these type of data

Dictionaries: Functionality and Syntax

• Keys vs. Values
• Create / Initialize
• Add (key, values)
• Retrieve/Update values
• Iterate
• Remove (key, values)
• Be aware of aliasing! (as we saw with lists)

Sets

•Why? (Functional)
• Non-duplicate elements

• Use set operations not available for lists
• Union, intersection, difference, …

Sets: Functionality and Syntax

• Create / Initialize
• Add values
• Retrieve/Update values
• Delete values
• Iterate
• Be aware of aliasing! (as we saw with dictionaries and lists)

diagonalsMatch(L)

Write a function that returns True if the given list L is a square 2D list
(i.e., a list of lists with equal row and column lengths) and both its main
diagonal (from top-left to bottom-right) and anti-diagonal (from
top-right to bottom-left) contain the same values. Otherwise, return
False.

Dictionaries & Sets

•They are fast, blazingly fast, at performing certain operations
• Membership (both)
• Retrieving/updating a value for a key (dictionaries)
• Removing elements (both)

Example: mostFrequentWord(wordList)

•Given a list of words from a large text, return the most frequent word
together with its frequency. If ties, return any of the most frequent
words.

pairSumsToN(L, n)

• Find two elements of the list L that sum to n.
• If no pair exists, return None

Measuring performance

Measuring performance requires that we determine how an
algorithm’s execution time increases with respect to the input size

Why would you want to do this?

Limitations of Experiments

• It is necessary to implement the algorithm, which may be difficult

• Results may not be indicative of the running time on other inputs

not included in the experiment.

• In order to compare two algorithms, the same hardware and

software environments must be used

Theoretical Analysis

What we do instead:

• Characterize running time as a function of the input size, e.g., n
Why?

• Takes into account all possible inputs
• Allows us to evaluate the speed of an algorithm independent of the

hardware/software environment

How?

• Count the number of operations in our algorithm assuming a worst
case scenario

Example

def foo(L): #L is a list

 uselessVariable = 43

 if len(L) > 0:

return L[0] * 3

 return 42

Example

def foo(L): #L is a list

 i = 1

 result = 0

 while i < len(L):

 result += L[i]

 i += 1

 return result

Big-O: Simplify

• We only care about how the number of steps grows with the input size
• This growth rate is not affected by constant factors or lower-order terms
• Examples (number of operations)
• 102*n + 105 has a linear growth rate (just like n)
• 105*n^2 108*n has a quadratic growth rate (just like n^2)
• 3*n^3 + 20*n^2 has a cubic growth rate (just like n^3)
• 97*log(n) + log(log (n)) has a logarithmic growth rate (just like log(n))

The slower the growth rate, the more efficient the algorithm, so choose an
algorithm with a slower growth rate!

Efficiency

•Why we don’t care about lower magnitude terms

Big-O: Notation

• O(1): Constant
• O(N): Linear growth
• O(N^2): Quadratic growth
• O(N^3): Cubic
• …
• O(logN): Logarithmic
• O(2^n): Exponential

N is the size of our input

Efficiency classes

Example

Calculate the Big-O

def foo(n):

i = 0

while i < 1000*n:

print(“42”)

i = i + 1

Example

Calculate the Big-O

def foo(n):
i = 0
j = 0
while i < n:

while j < n:
print(“one operation”)
j = j + 1

i = i + 1

Most Frequent Words (bad)

def mostFrequentWordv1(wordList):
 maxword = None
 maxcnt = 0
 for word in wordList:
 cnt = wordList.count(word)
 if cnt > maxcnt:
 maxcnt = cnt
 maxword =word
 return (maxword, maxcnt)

