Review

(b) (15 points) Free Response: Animations
Now, Let’s animate the StackCoins board game.
In this part assume the function drawStackCoins(app, coinCells) already exists and works well.
Do not write it again, instead just call it when you need it.
The game should have the following features:
1. The game starts with an empty board (all cells have white circles); See figure (b) from the previous
problem.
2. A coin is inserted in a column by pressing at any place on that column.
3. A coin should be stacked on the selected column. Meaning it should be inserted on the next empty
cell in that column. For example: the next empty cell in column 3 in Figure 2 is cell ("23") since

Columns cell ("33") is filled. Remember to update the string coinCells to keep track of inserted coins.
0 1 2 3 4 5 6 4. If the user presses on a column that is already full, a message should be displayed on the empty

space at the bottom of the canvas saying: Invalid Column !!!: See figure 2 below.

5. The game can be reset by pressing the r key.

Rows

Invalid Column !!!

&) i "50,40,53,66" .. , - . . :
\a) drawStackCoins (app ’ ,40,53,56") Figure 2: The view after trying to insert a coin in a full column (column 0)
Notes:

e Design your helper functions wisely and the problem will be easier.
.split() may be useful here but you may only loop over the result, and may not index/slice the
result or use list functions or list methods.

e Do not hardcode for a 400x400 canvas. However, you may assume the canvas is square and at
least 100x100 pixels.

e You will be penalized if your code results in an MVC violation.

e Make reasonable choices for anything not specified above.

e To solve this, you need to write onAppStart, onKeyPress, onMousePress, and redrawAllL

¢ You do not need to include any imports or the main function.

5. (15 points) Free Response:

Write the function isValidRGBStr(s) that takes in a string s and returns True if &
is a valid RBG string and Falsze il it is not.

A valid RGB string is of the form rgb(x,y,z) or RGB(x,y,z) and satisfies the fol-
lowing constraints:

¢ x.y, z represent integers between () and 255.

¢ There are no white spaces within the string.
For example:

valid RGE strings
assert(isValidRGBStr('rgb(0,0,0)') == True)
assert (isValidRGBStr ('RGB(255,128,4)') == True)
assert (isValidRGBStr ('RGB(255,255,255)"') == True)

#invalid cases
ups, spaces inside
assert (isValidRGBStr ("RGB (255,255, 255) ') == False)
wrong capitalization: Rgb is not valid
assert (isValidRGBStr('Rgb(255,255,255) ') == Falsze)
It must be of the form rgb(x,y,z) or RGB(x,y,z)
assert(isValidRGBStr('(255,128,4) ') ==False)
red component equal to 15112 is not valid. It must be between 0 and 255
assert(isValidRGBStr("rgb(15112,2 265)") == False)
nonsense RGB string, It must be of the form rgb(x,y,z) or RGB(x,y,z)
assert(isValidRGBStr('color blue') == Falsze)

Hint: The following built-in string methods may be useful: isdigit() that checks
if the characters are numerical, and split.

3. (7 points) Free Response: Smallest Integer Inside Square Brackets

Write the function smallestIntInsideBrackets(s) that finds the smallest integer among all numbers
appearing inside square brackets [] in the given string s.

If there are no valid integers inside square brackets, return None. A valid integer consists only of digits and
may have an optional leading — (negative sign). Decimal numbers (floats) are not considered valid integers.
Here are some test cases:

assert smallestIntInsideBrackets("15[112] Spring [25]") == 25
assert smallestIntInsideBrackets("15[112] Spring [25] -42") == 25

assert smallestIntInsideBrackets("15[112] Spring [25] [-42]") == -42
assert smallestIntInsideBrackets("NoBracketsHere") == None
assert smallestIntInsideBrackets("Floats are not Ints [15.112]") == None

assert smallestIntInsideBrackets("Be [care]ful with [non]digits [42]") == 42

drawBlockyHourGlass (quiz 5)

drawBlockyHourGlass (app, 5) produces the graphics below:

drawBlockyHourGlass (app, 6) produces the graphics below:

e

Here are the specifications:

¢ There are exactly n blocks.
drawBlockyHourGlass (app, 7) produces the graphics below: -
» The blocks have the same height.
+ The width of the blocks decreases proportionally towards the center and then increases back symmet-
rically.
» The smallest block(s) always have a width of 50 pixels.

o The largest blocks span the entire window width.

+ The colors of the blocks alternate between red and green, with the topmost block always being red.

Examples:

Exam

Exercise

* At the end of this set of operations, which pairs of lists will still be aliased?

a = [1) 2) "X") "y"]
b = a

C = [1) 2) "X") "y"]
d = E

a.pop(2)

b=>b+ ["wow"]

c[0] = 42

d.insert(3, "yey")
aandb

candd

All lists are aliases of the same list
None of them are aliased

PWwNR

CMUP-S24 Midterm

def ct4(L):
M=1L
N=[v//10 for v in L]
print(N)
M.append(N.pop(9))
L = sorted(L)

print(L)

print (M)

print(N)
L = [15, 5]
cta(L)

print(L) # do not miss this!

Lists: Taxonomy of problems

* Cat 3: Given a list L, write a non-destructive function to solve some task
using L without modifying the original L.

* Example: nondestructiveRemoveNonInts

e Cat 4: Given a list L, write a destructive function to solve some task that
mutates L.

 Example: destructiveRemoveNonInts

e Cat 5: Solve a task involving 2d lists.
* Example: isMagicSquare

Example problems with two lists

isSwappylListpair: Two lists L1 and L2 are Swappy List Pairs if exactly one swap
of two elements within L1 transforms it into L2. Write a function
isSwappyListPair(L1l, L2) thatreturns True if L1 and L2 are Swappy List
Pairs, meaning L1 can be made identical to L2 by swapping exactly two of its
elements. Otherwise, return False.

assert isSwappylListPair([1,2,3,42], [3,2,1,42]) # Swaps index @ and 3

assert isSwappylListPair(['equal', 'lists'], ['equal', 'lists']) == False # Identical lists
assert isSwappylListPair(["equal"], ["equal"]) == False # Identical strings

assert isSwappylListPair([42, 1, 112], [122, 2, 2025]) == False # Too many mismatches

assert isSwappylListPair([e,1,5,1,1,2], [5, 1, 2, 1, 1, @]) == False # Too many swaps required
assert isSwappylListPair([42, 3], [42, 2]) == False # One mismatch, cannot be fixed with a swap
assert isSwappylListPair([15], [15,112]) == False # Length mismatch

1sMagicSquare

* Write the function isMagicSquare(L) that takes an arbitrary list L
and returns True if it is a magic square and False otherwise, where a
magic square has these properties:

* The list is 2d, non-empty, square, and contains only integers, where no
integer occurs more than once in the square.

* Each row, each column, and each of the 2 diagonals each sum to the same
total. Note that we do not require that the integers are strictly in the range
from 1 to n for some n. We only require that the integers are unique and that
the sums are identical.

3x3 magic

15 square

isMagicSquare(L)

* Check that L is a list

* Check that L is a non-empty square 2d list
* Check that all elements are lists
* Check that all elements have 1en(L) elements

* Check that all elements in every row of L are integers
* Check that all elements in every row are unique

* Check that the sum of rows, the sum of columns, and
the sum of diagonals are equal

15 1

isMagicSquare(L)

° Check that L is a list

* Check that L is a non-empty square 2d list:
* Check that all elements are lists
* Check that all elements have 1en(L) elements

* Check that all elements in every row of L are integers
* Check that all elements in every row are unique

isValidSquare(L)

isValidSquare(L)
e Check that L is a list l’
e Check that L is a

non-empty square 2d list:

* Check that all elements
are lists

« Check that all elements —-—"““"
have len(L) elements

* Check that all elements in I/y
every row of L are
integers

* Check that all elements |n—->
every row are unique

7 IF Ten(l) = S

1 def isValidSquare(L):

if not isinstance(L, list):
return False

return False
for row in L:
if not isinstance(row, list):

\

return False y
> for row in L:)

return False <
nrows = len(L)
for: row in L:

if len(row) != nrows:

for val in row:
if not isinstance(val, int):
return False

(

_

y,
valuesSeen = [])
for row in L:

for val in row:
if val in valuesSeen:
return False

valuesSeen.append(val) Y,

return True

isMagicSquare(L)

* Check that the sum of rows, the sum of columns, and
the sum of diagonals are equal

isMagic(L)

isMagic(L)

e Check the sum of
rows

* Check the sum of
columns

e Check the sum of
diagonals

b

/

def isMagic(L):

thesum = sum(L[©])

7

for row in L:
if sum(row) != thesum:
return False

N = len(L)
for jcol in range(N):
col =[]

for irow in range(N):
col.append(L[irow][jcol])
if sum(col) != thesum:
return False

diagl = []

for i in range(N):
diagl.append(L[i][i])

if sum(diagl) != thesum:
return False

diag2 = []

for i in range(N):
diag2.append(L[i][N-i-1])

if sum(diag2) != thesum:
return False

return True

— | def isValidSquare(L):

2 if not isinstance(L, list):

3 return False

4 if len(L) == @:

5 return False

6 for row in L:

[[7 if not isinstance(row, list):
8 return False
1sSMiaglcoqguare

10 for row in L:

11 if len(row) != nrows:
12 return False

13 for row in L:

- 14 for val in row:

15 if not isinstance(val, int):
16 return False

17 valuesSeen = []

18 for row in L:

19 for val in row:
20 if val in valuesSeen:
21 return False

1 22 valuesSeen.append(val)
23 return True
7 6 =15

25 def isMagic(L):

- - — ——

26 thesum = sum(L[©])

Two helper

LN

28 for row in L:

1 ﬂ1 5 functions 29 if sum(row) != thesum:

3|8 =15

‘ 31 # check c
32 N = len(L
33 for jcol in range(N):
34 col = [
| 35 for irow in range(N):
- . 36 col.append(L[irow][jcol])
1 ‘ ‘ ‘ 37 if sum(col) != thesum:
1 5 1 5 38 return False
15 15 15
N a diagl = []
42 for i in range(N):
43 diagl.append(L[i][i])
44 if sum(diagl) != thesum:
45 return False
46
a7
48 diag2 = []
49 for i in range(N):
50 diag2.append(L[i][N-i-1])
51 if sum(diag2) != thesum:
52 return False
53 return True
54

55 def isMagicSquare(L):

Main taSk > 56 if not isValidSquare(L):

57 return False
58 return isMagic(L)

