
Administrivia

• Start Homework earlier

Lists

Lists: Type of problems

•Cat 1: given a list L, process L and compute some value out of its
elements. Example: alternatingSum, hasDuplicates

•Cat 2: Given some input, return a NEW list with some properties.
Example: return the first n 7ish numbers, findDuplicates

Example: alternating sum

•Given a list of positive integers, calculate the alternating sum

•alternatingSum([1, 2, 3, 4]) == -2
• because 1 - 2 + 3 - 4 = -2

•alternatingSum([15, 5, 10, 1]) == -2
• because 15 - 5 + 10 - 1 = 19

Example: find duplicates

•Write the function findDuplicates(L) that takes a list L of
arbitrary values, and returns the list of duplicate values.

•The order is not important, but there shouldn't be duplicate values in
the result

•assert(findDuplicates([1,1,1,2]) == [1])
•assert(findDuplicates([1,4,2,1,3,4,5,2]) ==[1,4,2])

What’s really happening here?

L = [15112, 42, 15122, 2023]

theList == [15112, 42, 15122, 2023]

Aliasing

•Using lists as function arguments

•Python tutor: example

https://pythontutor.com/visualize.html#code=def%20editList%28M%29%3A%0A%20%20%20%20M%5B0%5D%20%3D2%0A%20%20%20%20%0A%0AL%20%3D%20%5B15,%20112%5D%0A%0AeditList%28L%29%0A%0Aprint%28L%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Aliasing
• Python tutor: example 1

• Python tutor: example 2

Lists: Taxonomy of problems

•Cat 1: given a list L, process L and compute some value out of its
elements. Example: alternatingSum, hasDuplicates

•Cat 2: Given some input, return a NEW list with some properties.
Example: return the first n 7ish numbers, findDuplicates

•Cat 3: Given a list L, write a non-destructive function to solve some
task using L without modifying the original L.
Example: nondestructiveRemoveNonInts

•Cat 4: Given a list L, write a destructive function to solve some task
that mutates L.
Example: destructiveRemoveNonInts

Example: nondestructiveRemoveNonInts

•Write the function nondestructiveRemoveNonInts(L) that
returns a new list that is equivalent to L without the non-integer
values. It should not modify the original L.

L = [112,‘hi’,‘3’,1,5]

nondestructiveRemoveNonInts(L) returns [112,1,5]

assert(L == [112,‘hi’,‘3’,1,5])

Example: destructiveRemoveNonInts

•Write the function destructiveRemoveNonInts(L) that
removes the non-integer values from L.

L = [112,‘hi’,‘3’,1,5]

destructiveRemoveNonInts(L) # assumed to return None

assert(L == [112,1,5])

Destructive vs Non-Destructive Operations

Destructive vs Non-Destructive Operations

Exercise
• At the end of this set of operations, which pairs of lists will still be aliased?

1. a and b
2. c and d
3. All lists are aliases of the same list
4. None of them are aliased

Lists: Taxonomy of problems

• Cat 1: given a list L, process L and compute some value out of its elements.
Example: alternatingSum, hasDuplicates
• Cat 2: Given some input, return a NEW list with some properties. Example:

return the first n 7ish numbers, findDuplicates
• Cat 3: Given a list L, write a non-destructive function to solve some task

using L without modifying the original L.
• Example: nondestructiveRemoveNonInts

• Cat 4: Given a list L, write a destructive function to solve some task that
mutates L.
• Example: destructiveRemoveNonInts

• Cat 5: Solve a task involving 2d lists.
• Example: isMagicSquare

isMagicSquare

•Write the function isMagicSquare(L) that takes an arbitrary list L
and returns True if it is a magic square and False otherwise, where a
magic square has these properties:
• The list is 2d, non-empty, square, and contains only integers, where no

integer occurs more than once in the square.
• Each row, each column, and each of the 2 diagonals each sum to the same

total. Note that we do not require that the integers are strictly in the range
from 1 to n for some n. We only require that the integers are unique and that
the sums are identical.

 3x3 magic
square

isMagicSquare(L)

•Check that L is a list

•Check that L is a non-empty square 2d list
• Check that all elements are lists
• Check that all elements have len(L) elements

•Check that all elements in every row of L are integers

•Check that all elements in every row are unique

•Check that the sum of rows, the sum of columns, and
the sum of diagonals are equal

isMagicSquare(L)

•Check that L is a list

•Check that L is a non-empty square 2d list:
• Check that all elements are lists
• Check that all elements have len(L) elements

•Check that all elements in every row of L are integers

•Check that all elements in every row are unique

•Check that the sum of rows, the sum of columns, and
the sum of diagonals are equal

isValidSquare(L)

isValidSquare(L)

• Check that L is a list

• Check that L is a
non-empty square 2d list:
• Check that all elements

are lists
• Check that all elements

have len(L) elements

• Check that all elements in
every row of L are
integers

• Check that all elements in
every row are unique

isMagicSquare(L)

•Check that L is a list

•Check that L is a non-empty square 2d list:
• Check that all elements are lists
• Check that all elements have len(L) elements

•Check that all elements in every row of L are integers

•Check that all elements in every row are unique

•Check that the sum of rows, the sum of columns, and
the sum of diagonals are equal

