Week 3: Agenda

* Quiz #2: Grades will be released before Tuesday
* This week: Quiz #3 — Loops

* Loops (review)

* Strings

nth Number Problems

. ThreeOddy numbers
- Multiple of 3
- Only odd digits

Examples:

- is3aThreeOddy? YES
- is5aThreeOddy? NO
- is42 a ThreeOddy? NO
« is15a ThreeOddy? YEs

Considering only positive integers:
What’s the Oth ThreeOddy number? 3
What’s the 1st ThreeOddy number? 9

i8]

because in computer science you start with Oth

Another example: 7ish numbers

0

* Non-negative number, and the sum of 7
its digits a is multiple of 7 16

* Examples: 25

e 61:6+1 =7 34

e 86:8+6 =14 43

e 489:4+8+9=21

59

61
68
70
77
86
95
106
115

nth... problems

* Other examples: nthCircularPrime, nth7ish,

* Recap: nth71ish

* Part 1: Write the function is7ish(n), which takes a non-negative integer n
and returns True if nis a 7ish number and False otherwise.

* Part 2: Write the function nth7ish(n)which takes a non-negative integer n
and returns the nth 7ish number. 0

7

* nth7ish(0) should return 0, the first 7ish number. 16

25

* nth7ish(1) returns 7. =

52
59
61
68
70
77
86
95
106
115

7ish

Position Number
0 0
1 7
2 16
3 25
4 34
5 43
6 52
7 59
8 61
9 68
10 70
11 77
12 86
13 95
14 106
15 115

Another loop problem:
printMysteryShape(n)

*printMysteryShape(5)

A W N RO
¥ ¥ ¥ *

*printMysteryShape(9)

A LW ERE O
* %k %k ¥

String Operations

* Indexing:

How do we get the first character in a string?
s[0]

How do we get the last character in a string?
s[len(s) - 1]

What happens if we try an index outside of the string?
s[len(s)] # runtime error

String Operations

*Slicing:

Slices are exactly like ranges — they can have a start, an end, and a step.
But slices are represented as numbers inside of square brackets,
separated by colons.

s = "abcde”

print(s[2:1len(s):1]) # print "cde"
print(s[0@:len(s)-1:1]) # prints "abcd"
print(s[0@:1len(s):2]) # prints "ace"

Check

* Given the string s= , what slice would we need to get
the string ?

Announcement

Thursday sessions are now in Room 2152

Code Tracing: Loops

def ct3(z):
total = 0@
for y in range(z,1,-1):
1f (y % 2 == 0):
print('skip y =', y)
continue
total += y
1f (total > 20):
print('break at y =', y)
break
return total
print(ct3(10))

Loop problems: Finding “runs”

What is a Run of Digits?

A run of digits is a sequence of consecutive, identical digits within a
number.

For example:

112233 has runs: 11, 22, and 33
4445551 has runs: 444, 555, and 1
77777 has one run: 77777

Each time a digit changes, a new run starts.

Example: Finding runs of a specific digit d

Given a number and a specific digit d, we want to find the length of the
longest run of d, meaning the sequence where d appears consecutively
the most times.

Examples:
Number: 100220022000, d=0

Runs of 00, 00, 000 Longest run: 000 (length=3)
Number: 333355533311, d=3

Runs of: 3333, 333 Longest run: 3333 (length=4)
Number: 456789, d=5

Runs of 5: 5 Longest run: 5 (length=1)

String built-in methods

String built-in methods work differently from built-in functions. Instead
of writing:

isdigit(s)

we have to write:
s.isdigit()

This tells Python to call the built-in string function isdigit() on the
string s. It will then return a result normally.

String functions

Some string functions return information about the string.

s.isdigit(), s.islower(), and s.isupper() return True if the
string is all-digits, all-lowercase, or all-uppercase, respectively.

s.count(c) returns the number of times the character c occurs in s.

s.find(c) returns the index of the character c in s, or -1 if it doesn't
occurin s.

Loops

"hello 15112°
GRS
(f"This is character {c}")

w in s.split():
(f'This is word {w}")

From ASCII to Unicode

* Teleprinters had to “agree”
how to convert codes to
characters and vice versa

Dec_Hex Chor [Dec Hex Char

Dec Hex Name “Char_Ctrl-char

End of xmitblock ETB CTRL-W

-
~

18 Cancel CAN CTRL-X
19 End of medium EM CTRL-Y

14 Substitute SUB CTRL-Z
118 Escape ESC CTRL-[
~1C File separator FS CTRL-\

oy
o

Group separator GS CTRL-]
Recordseparator RS CTRL-™
Unit separator US CTRL-

R

-0 Null NUL CTRL-@ 9 @

1 Start of heading SCH CTRL-A 41 A a
2 Start of text STX CTRL-B 92 8B b
'3 End of text ETX CTRL-C # 43 C c
4 End of xmit EOT CTRL-D 3 4“4 D d
§S Enquiry ENQ CTRL-E % % € @
‘6 Acknowledga ACK CTRL-F 2 4% F f
7 Bell BEL CTRL-G Y 47 G Q
8 Backspace BS CTRL-H (8 H h

9 Horizortd tab HT CTRL-1) @ 1 |
0A Line fead LF CTRL-) * - 4A) j
08 Varticd tab VT CTRL-K + 48 K k

- OC Form feed FF CTRL-L ¥ 4L |
0D Carriage feed CR CTRL-M - 4D M m
0E Shift out SO CTRL-N ’ %€ N n
OF Shiftin Sl CTRL-O / - # 0 0
10 Dataline escape DLE CTRL-P 0 O P P
11 Devicecontrall DC1 CTRL-Q 1 . s1 Q q
12 Device contral 2 DC2 CTRL-R 2 52 R r
113 Device control 3 DC3 CTRL-S 3 $3 S H
) 14 Dewvice control 4 DC4 CTRL-T Bl s T t
15 Neg acknowledge NAK CTRL-U S s v u
16 Symchronouside SYN CTRL-V 6 % Vv v
5 7 7w w
8 B X %

9 9 v y

. Sa 2z 2

SELI {

lsc \ |

so) }
2 s€ > ~

SF

.
o
i

Example: 1argestNumber(s)

* Write the function 1largestNumber(s) that takes a string s and

returns the largest integer value that occurs within that text, or None
if no such value occurs.

* You may assume that numbers in the text are non-negative integers.

* You may assume that numbers are always composed of consecutive
digits delimited by spaces.

assert(largestNumber("I saw 3 dogs, 17 cats, and 14 cows!") == 17)
assert(largestNumber("I saw four dogs") == None)

Example: 1argestNumber(s)

* Observation: Extracting numbers is similar to finding “runs”

Example: leastFrequentLetters(s)

* Write the function leastFrequentLetters(s), that takes a string s, and
ignoring case (so "A" and "a" are treated the same), returns a string containing
the least-frequent alphabetic letters that occur in s, in the same order.

 Each least-frequent letter is included only once in the result and in alphabetical
order.

* Digits, punctuation, and whitespace are not letters!

* If s has no alphabetic characters, the result should be the empty string ("").
* Example:

leastFrequentLetters()

Example: leastFrequentLetters(s)

- Break down the problem into small subproblems

a. Find the lowest frequency >0
« "aDqg efQ? FB'daf!!!" -> lowest frequency is 1
« "aaabBcc" -> lowest frequency is 2 (both b and c occur 2 times and no letter occurs
with frequency 1)

b. Extract the letters that occur with the lowest frequency
« "aDqg efQ? FB'daf!!!" -> find letters with count = lowest frequency (2)
* result: “eB”

« "aaabBcc", lowest frequency is 2
* result: “bBcc”

