
Week 13:

•Course admin

• Sorting

• Behold a O(nlogn) algorithm!

• Searching

Sorting: A bit of
history

• Herman Hollerith's sorting machine developed
in 1901-1904 used radix sort. Punched card
sorter

• First the 0s pop out, then 1s, etc.

• For 2-column numerical data would sort of
units column first, then re-insert into
machine and sort by tens column

• Patented the Electric Tabulating Machine

• His company became IBM

https://en.wikipedia.org/wiki/Electric_Tabulating_Machine

Selection Sort

https://docs.google.com/file/d/1mM0OKjfqyrMfqg0ZVLQcrVpyO_v0fu28/preview

Bubble Sort

https://docs.google.com/file/d/13kLdTmnb5cQZUwuECkm_C9wcj5ga7Upv/preview

Merging two sorted lists

Steps

1. Split the stack into two little stacks
2. Give one stack to one person, wait for the result
3. Give the other stack to another person, wait for the result
4. Place both stacks in front of you, with the top card of each stack

visible.
5. Look at the top card from each stack.
6. Pick the smaller card and place it face down onto a new pile (this

will become your merged stack).
7. Repeat steps 2–4 until one of the stacks is empty.
8. Once one stack is empty, take the rest of the cards from the other

stack and place them on the merged stack in order, one by one.
9. Flip the merged stack over so the smallest card ends up on top.

Mergesort

https://docs.google.com/file/d/1mPF1bd7Ep22U6G1sdMRh_lVBoxuUefwL/preview

 Searching on sorted data

•Binary search is an efficient algorithm for finding an element from a
sorted collection of items.

•Example: Find an element e in a Python list L

•Easy: e in L efficiency?

• If L is sorted, we can do much better

•How?

Binary Search: Recursive

Bad implementation, why? Now it is OK, why?

Binary Search: Iterative

Binary Search: other uses

Write the function lowerBound(L, x) that returns the largest element of L
that is strictly less than x. Assume no duplicates. The function must be O(logN)

Examples:
assert(lowerBound([4,7,9,11,12,13,15,16,17], 4) == None)

assert(lowerBound([4,7,9,11,12,13,15,16,17], 5) == 4)

assert(lowerBound([4,7,9,11,12,13,15,16,17], 6) == 4)

assert(lowerBound([4,7,9,11,12,13,15,16,17], 7) == 4)

assert(lowerBound([4,7,9,11,12,13,15,16,17], 8) == 7)

assert(lowerBound([4,7,9,11,12,13,15,16,17], 20) == 17)

Challenge: countInRange(L)

•Write the function countInRange(L, a, b) that returns the number of
elements in the open range (a, b), that is, numbers between a and b, both
bounds exclusive. The function must be O(logN)

• L = [4,7,9,11,12,13,15,16,17]
• assert(countInRange(L, 4, 7)==0)
• assert(countInRange(L, 4, 12)==3)
• assert(countInRange(L, 4, 20)==8)
• assert(countInRange(L, 1, 3)==0)
• assert(countInRange(L, 12, 14)==1)

