
Week 10: Agenda

• Term Project
• Advanced Recursion:

• CT
• Tree Recursion
• More examples

• OOP

Term Project: Important Dates

TP0

Mon 24-Mar

• Final TP idea
• Meeting with your

mentor

TP1
Tue 9-Apr, 6pm

• Design proposal
(document) and
preliminary code

• Meeting with your
mentor

TP2
Tue 15-Apr, 6pm
• Working demo

(code)
• Meeting with your

mentor

TP3
Tue 22-Apr, 4pm

• Final code
• Video
• Demo to your

mentor

Term Project
Agreement Form

Unlocking the power of recursion

Tree Recursion: When you make a recursive call more than once in your
recursive case

Why?

- Some problems are more easily solved by tree recursion.
- Brute forcing solutions (Backtracking)

Some Examples: hasSublistSum

hasSublistSum(L, s)

Write the function hasSublistSum(L, s) that takes a list of integers
L and an integer s, and returns True if there exist elements in L that
sum to s. Otherwise, the function returns False.

hasSublistSum([42,15,-1,12],53)

hasSublistSum([15,-1,12],11)

Use 42

hasSublistSum([-1,12],-4)

Use 15

hasSublistSum([12],-3)

Use -1

hasSublistSum([],-15)

Use 12

hasSublistSum([],-3)

False Do Not Use 12

False

False

False

hasSublistSum([12],-4)

False

hasSublistSum([],-16) hasSublistSum([],-4) hasSublistSum([],0)

hasSublistSum([-1,12],11)

hasSublistSum([12],12)

False

False
Do not Use -1

Use 12 Do Not Use 12

Do Not Use 15

Use -1

Use 12
Tru

e

True

True

True

True

Example:

Write the function coinChange(coins, amount) that calculates
the number of unique ways to make change for the given amount using
the coins. You can use each coin an unlimited number of times.

Can you return the ways to make change as a list of lists?

E.g.,
coinChange([1,2,5], 5) returns [[5],[2,2,1],[2,1,1,1],[1,1,1,1,1]]

Example A: getHiLo(L)

• Write the function getHiLo(L) that receives a list of integers L and
returns a tuple (a,b) where a is the lowest number and b is the highest.
You can assume len(L) > 0

• Examples:
• getHiLo([1,2,3,4,5]) == (1,5)
• getHiLo([42,4,5,-6]) == (-6,42)
• getHiLo([42]) == (42,42)

Example B: indexMap(L)

• Write the function indexMap(L) that takes a 1D list L and returns a
dictionary that maps each value in L to a set of the indices in L where that
value occurs. For example:

•indexMap([5, 6, 5]) == { 5:{0,2}, 6:{1} }
•indexMap([9, 6, 3, 6, 9]) == { 3:{2}, 6:{1,3}, 9:{0,4} }

Midterm 2 topics end here

Term Project

• What? The minimum
• You should produce an interactive Python application.
• Sufficiently complex
• Using cmu_graphics

• Beyond
• Something that shows algorithmic complexity (AI, etc)
• An amazing user experience. (The look and feel, graphics, etc.)
• The usage of an external module to add a feature. (Multi-player, fancy

graphics, etc.)

Object Oriented Programming
aka OOP

Definitions

• Function
• Class = Function(s) + Data (declarative)

• Functions inside a class are call methods
• Data are called properties

• Example:
• strings:

• Data: sequence of characters
• Functions: replace, find, split, …

• lists:
• Data: sequence of elements
• Functions: append, pop, find, index, …

Creating your own class

Example: Circle

- Properties?
- What data define a circle?

- Methods?
- How do you plan to use circles in your code?

- .getArea()
- .getDiameter()
- .doIntersect(anotherCirle)

Some special methods

• __init__: constructor, initializer
• Define initial values for the properties when an object is created
• It does NOT return any meaningful value

• __repr__:
• Returns a string
• Python uses it to convert an object to a string
• E.g., print

• __eq__: comparator
• Returns True if the object is equal to another object
• Python uses it for testing equality

What you need to know

• The idea behind OOP
• Class vs Object
• Functions vs Methods
• How to define a class
• How to use a class

