
15-112
Spring 2025 Exam 2

March 27, 2025

Name:

Andrew ID:

• You may not use any books, notes, or electronic devices during this exam.

• You may not ask questions about the exam except for language clarifications.

• Show your work on the exam to receive credit.

• You may use the backs of pages as scratch paper.

• All code samples run without crashing except otherwise specified. Assume any imports
are already included as required.

• You may assume that random, math, string, cmu_graphics and copy are imported; do
not import any other modules.

• If you need extra space, use the back of the pages. Do not tear off any page. Doing so
may be considered an academic integrity violation.

Don’t write anything in the table below.

Question Points Score

1 20

2 10

3 20

4 20

5 15

6 15

Total: 100

Time

15

7

15

15

11

12

75

There are 100 points on this exam, lasting 75 minutes.
You can find estimated completion times for each question in the table above.

15-112 Spring 2025 Exam 2 March 27, 2025

1. Code Tracing
Indicate what each will print. Place your answer (and nothing else) in the box next to or
below each block of code.
(a) (5 points) CT1

def ct1(L):
M = []
for i in range(len(L)):

if i in L:
j = L.index(i)
print(j)
M.append(sum(L[i:j]))

return M

print(ct1([1,5,1,1,2]))

(b) (5 points) CT2
import copy
def ct2(a):

b = a
c = copy.copy(a)
d = copy.deepcopy(a)
a = [d[1], c[0]]
a.append(42)
b = b[::-1]
d[1][1] = 112
c[0][1] = 17
c[0] = d[1].pop()
a[0] = a[1]
print("a =", a)
print("b = ", b)
print("c =", c)
print("d = ", d)

e = [[1, 2],[3, 4]]
ct2(e)
print("e = ", e)

Page 1 of 13

15-112 Spring 2025 Exam 2 March 27, 2025

(c) (5 points) CT3
def ct3helper(d):

s = set()
for k in d:

s.add(k)
d[k] = k
s.add(d[k])

return s

def ct3(L):
res = []
for e in L:

res += [ct3helper(e)]
print(f'res {res}')

L = [{'h': 'e'}, {'l': 'lo', 4: 2}]
print(ct3(L))
print(L)

(d) (5 points) CT4

def ct4(L, d=0):
if len(L) < 2:

return [sum(L)]
else:

i = len(L)//2
a = ct4(L[:i], d+1)
print(f'mid {a} {d}')
b = ct4(a, d+1)
return a + [a[0]-b[0]] + b

print(ct4([1,3,5,9]))

Page 2 of 13

15-112 Spring 2025 Exam 2 March 27, 2025

2. (10 points) Big-O
For each function shown below, write the total Big-O runtime of the function in terms of
N, the length of the function argument, in the box to the right of the code. All answers
must be simplified- do not include lower-order terms! For full credit, you must
include line-by-line Big-O.

1 def f1(L): # L is a list with N integers
2 for p in [2, 3, 5, 8, 11, 13] :
3 for k in range(len(L)):
4 if L[k] % p == 0:
5 L[k] = p

1 def f2(L): # L is a list with N integers
2 S = set()
3 for v in L:
4 if v**2 in L:
5 S.add(L.count(v**2))
6 return S

1 def f3(D): # D is a dictionary with N integer keys
2 L = []
3 for k in D:
4 L.append(k)
5 v = max(L)
6 while L.count(v) > 0:
7 L.remove(v)
8 return L

1 def f4rec(s, ix = 0): # s is a string with N characters
2 N = len(s)
3 if ix >= len(s):
4 return ""
5 return s[ix] + f4rec(s, ix + N//4)

Page 3 of 13

15-112 Spring 2025 Exam 2 March 27, 2025

3. (20 points) Free Response: isSumPyramid
Write the function isSumPyramid(P) that determines whether the given value P represents
a valid sum pyramid.
A sum pyramid is a triangular structure where each number (except those in the bottom-
most row) is the sum of the two numbers directly below it. The pyramid is represented as
a list of n lists, where P[n-1] contains the lowest level (widest row), P[n-2] contains the
next level up, and so on. The first element of P (i.e., P[0]) contains a single number, which
should be the sum of the two numbers directly below it.
Your function should return True if the input list L represents a valid sum pyramid, as
shown in the test cases below. Otherwise, it should return False. Here are some examples:

P1 = [[55],
[21, 34],
[8, 13, 21],
[3, 5, 8, 13],
[1, 2, 3, 5, 8]]

assert isSumPyramid(P1) == True

55
21 34

8 13 21
3 5 8 13

1 2 3 5 8

Since each number in the pyramid is the sum of the two numbers directly below it, the
function correctly returns True.

P2 = [[10], # incorrect sum, it should be 9 to return True
[6, 3],
[5, 1, 2]]

assert isSumPyramid(P2) == False

P3 = [1, 2, 3, 6, 7, # Not a list of lists
[17, 24],
[8, 9, 15]]

assert isSumPyramid(P3) == False

P4 = [[100],
[42,58]
[20, 22, 36],
[12, 8, 14, 22],
[9, 3, 5], # Missing values, it should have five elements
[8, 1, 2, 3, 6, 7]]

assert isSumPyramid(P4) == False

P5 = "quiz7" # not even a list
assert isSumPyramid(P5) == False

P6 = [[42]] # simple case
assert isSumPyramid(P6) == True

P7 = [[42, 2025]] # Not a pyramid; a top row with one elem is missing
assert isSumPyramid(P7) == False

P8 = [["42"], # not an integer, it should be (integer) 42 to return True
[20, 22]]

assert isSumPyramid(P8) == False

Page 4 of 13

15-112 Spring 2025 Exam 2 March 27, 2025

Answer space for Question 3

Page 5 of 13

15-112 Spring 2025 Exam 2 March 27, 2025

Answer space for Question 3

Page 6 of 13

15-112 Spring 2025 Exam 2 March 27, 2025

4. (20 points) Free Response: Frequent Attendees
Imagine you are tracking attendance at a series of Supplemental Instruction (SI) sessions.
Each day’s sign-in sheet is recorded as a list of participant names, and you have a list of
these daily attendance records.
Adam and Rashid are organizing the sessions and want to identify which participants at-
tended more than one session. Anyone who attended only once should be excluded from the
results.
Your task is to write a function, getFrequentAttendees(L), that identifies these partici-
pants. The function should return a set containing the names of participants who attended
more than one SI session. If no participant attended more than once, the function should
return an empty set.
Some students may accidentally sign in two times during a single SI session. To handle this,
you should ensure that each student is counted only once per session before determining the
frequent attendees.
Assume there are at most 10 SI sessions. Your solution should run in O(N), where N is the
total number of students in the course.
Here are some test cases:

L1 = [["Ahmad", "Layla", "Ahmad"], # Ahmad signed in twice
["Ahmad", "Omar", "Hana"],
["Omar", "Hana", "Yusuf"]]

assert getFrequentAttendees(L1) == {"Ahmad", "Omar", "Hana"}

Example 2: Everyone attended only once
L2 = [["Fatima", "Zayd"],

["Aisha", "Khalid"],
["Bilal", "Huda"]]

assert getFrequentAttendees(L2) == set() # No frequent attendees

L3 = [["Ali", "Noor", "Ali", "Salma"], # Ali signed in twice, should be counted once
["Noor", "Salma"],
["Omar", "Salma"]]

assert getFrequentAttendees(L3) == {"Noor", "Salma"}

Page 7 of 13

15-112 Spring 2025 Exam 2 March 27, 2025

Additional Space for Answer to Question 4

Page 8 of 13

15-112 Spring 2025 Exam 2 March 27, 2025

5. (15 points) Free Response: Update List with Indices
Given a list L of elements and a list of new elements to be inserted at specific indices, your
task is to write a non-mutating function updateList(L, newElements) that takes a list L
and a list of tuples newElements, where each tuple consists of an element and the index
where it should be inserted. The function should return a new list that contains all the
original elements of L along with the new elements inserted at their respective indices. The
new elements should be inserted in order of their indices, and the insertion should respect
the original indices in the list. The function should not modify the original list L.
For example:

L = ['this', 'midterm']
assert updateList(L, [('is', 1), (2, 4)]) == ['this', 'is', 'midterm', 2]
assert L == ['this', 'midterm'] # L is unchanged

L = [27, 3, 20, 25]
updateList(L, [(15112, 3), (-2, 1), (42, 0)]) == [42, -2, 27, 15112, 3, 20, 25]
assert L == [27, 3, 20, 25] # L is unchanged

L = ['f', 'u', 'n']
assert updateList(L, [('y', 4), ('n', 2)]) == ['f', 'u', 'n', 'n', 'y']
assert L == ['f', 'u', 'n'] # L is unchanged

Page 9 of 13

15-112 Spring 2025 Exam 2 March 27, 2025

Additional Space for Answer to Question 5

Page 10 of 13

15-112 Spring 2025 Exam 2 March 27, 2025

6. (15 points) Free Response: Recursive Filter Digits
Write a recursive function recFilterDigits(n, d) that takes a positive integer n and a
nonzero digit d and returns an integer where all digits in n that are different from d are
replaced with 0s.

Your solution must use recursion. If you use any loops or iterative functions,
you will receive no points on this problem.

This also means that your solution must NOT use any built-in functions that imply iteration
like index, in, find, str. Furthermore, you cannot convert an integer into a string using
str, or convert a string into an integer using int.
Hint: You can define a helper function to deal with the negative cases. Your solution
must use recursion. If you use any loops or iterative functions, you will receive
no points on this problem.
Here are some test cases:

assert recFilterDigits(42424242, 2) == 2020202 # leaves only 2s
assert recFilterDigits(42, 4) == 40 # leaves only the 4s
assert recFilterDigits(-15112, 1) == -10110 # leaves only the 1s
assert recFilterDigits(20250327, 2) == 20200020 # leaves only 2s
assert recFilterDigits(42, 5) == 0 # leaves 5s (but there are no 5s)

Page 11 of 13

15-112 Spring 2025 Exam 2 March 27, 2025

Additional Space for Answer to Question 6

Page 12 of 13

15-112 Spring 2025 Exam 2 March 27, 2025

Reference: Complexity of Python Built-ins
General

Function/Method Complexity
Print O(N)
Range in Iteration Number of iterations = (end - start)/step

Strings: s is a string with N characters
Function/Method Complexity
Len O(1)
Membership O(N)
Get single character O(1)
Get slice O(end - start)
Get slice with step O((end - start)/step)
Chr() and Ord() O(1)
Concatentation O(len(s1) + len(s2))
Character Type Methods O(N)
String Edit Methods O(N)
Substring Search Methods O(N)

Lists: L is a list with N elements
Function/Method Complexity
Len O(1)
Append O(1)
Extend O(K)
Concatentation with += O(K), where K is the size of the list to concatenate
Concatentation with + O(N + K), where K is the size of the list to concatenate
Membership Check O(N)
Pop Last Value O(1)
Pop Intermediate Value O(N)
Count values in list O(N)
Insert O(N)
Get value O(1)
Set value O(1)
Remove O(N)
Get slice O(end - start)
Get slice with step O((end - start)/step)
Sort O(N log (N))
Multiply O(N*D)
Minimum O(N)
Maximum O(N)
Copy O(N)
Deep Copy O(N*M)

Sets: s is a set with N elements
Function/Method Complexity
Len O(1)
Membership O(1)
Adding an Element O(1)
Removing an Element O(1)
Union O(len(s) + len(t))
Intersection O(min(len(s), len(t)))
Difference O(len(s))
Clear O(len(s))
Copy O(len(s))

Dictionaries: d is a dictionary with N key-value pairs
Function/Method Complexity
Len O(1)
Membership O(1)
Get Item O(1)
Set Item O(1)
Delete Item O(1)
Clear O(N)
Copy O(N)

Page 13 of 13

