Fundamentals of Programming &

Computer Science
CS 15-112

Efficiency
March 5

Hend Gedawy

Carnegie Mellon University Qatar

There are Many Ways to Solve
Any Given Problem

Some are Better or more Efficient than Others !

2 E s TR
Carnegie Mellon University Qatar

What is Efficiency?

Efficiency is a measure of how much of
a resource an algorithm uses!

Carnegie Mellon University Qatar

Time Space

Why Care About Time Efficiency?

User Experience Business/Commercial Costs

®© O i\

Compute Resources Battery Lifetime

o igdyglagy il =i oLy

Carnegie Mellon University Qatar

How to Assess Time Efficiency?

Measure Elapsed Time

Carnegie Mellon University Qatar

Why isn’t the elapsed time for
an algorithm constant?

 Hardware Differences:
e CPU speed, number of cores, memory (RAM), disk speed, etc.

* Operating System:
* Different OSs may have different scheduling algorithms, memory

management strategies, and other system-level optimizations that can impact
runtime.

 Resource Utilization:

* |f the system is under heavy load or if other resource-intensive tasks are
running concurrently, the algorithm may experience slower execution times.

o g dslag il =i 2 aly

Carnegie Mellon University Qatar

How to Assess Time Efficiency?

We want to measure the efficiency of an algorithm
independent of the speed of the computer it is run on.

A better alternative is Counting Steps that the code takes
... Given input of size (N) ...

Very good proxy to time performance
(but always constant)

o igdyglagy il =i oLy

Carnegie Mellon University Qatar

Counting Steps

Two rules:

- A step takes constant amount of time;
i.e. time doesn’t increase as the input size (called n) increases

- Generally, A line of code is a single step if the whole line
runs in constant time

o igdyglagy il =i oLy

Carnegie Mellon University Qatar

Input Size (n) s Counting Steps

the integer n

def simple(n):

1-{:print("simp1e") #1 step

. # 1 step for range

'FOP 1 1n Pange (I’l) * # Loop runs for n iterations

- _{Print(i)#1smp
2n 2
update i ----- 1 step

S—

Total Number of Steps: 1+1+2n= 2n +2

9 5 : o
Carnegie Mellon University Qatar

Input Size (n) is Counting Steps

the size of the list

def sum_list(lst):

This function calculates the sum of integers from 1 to n.

s=0
for i in range(len(lst)):
S+=1

return s

Carnegie Mellon University Qatar

Counting Steps

Why does len() take a constant amount of time (1 step)???

How come it is not affected by List size??

Len() takes constant runtime no matter how many elements are in the list.

Because in Python the list object maintains an integer counter that
increases and decreases as you add and remove list elements

List Object

3

— 42 — 31 — 3

length = 5

1

remove(42): length = length -

1

List Object

3

21— s

length = 4

11

Carnegie Mellon University Qatar

Input Size (n) i Counting Steps

the size of the list

def sum_list(lst):

This function calculates the sum of integers from 1 to n.

1-—{:: s=0

for i in range(len(lst)):
s+=1
2n

1 { return s

Total Number of Steps: 1+ 2+ 2n + 1= 2n +4

12 5 : o
Carnegie Mellon University Qatar

Input Size (n) is Counting Steps

the size of the list

def classify_students(scores):

41 = topScores= []
1 <C lowScores= []

~ for score in scores: n iterations

1 1{"if score >= 80:
+ 1 topScores.append(score)

4n < 2 | 2 {elif score <= 35:

lowScores.append(score)

1L
\—
1 —{ print("Number of high scores: ", len(topScores))

41 = return topScores, lowScores

Total Number of Steps: 4n+ 4

13

Case 2 is
the Worst
Case

In this course, we
apply worst case
analysis

Carnegie Mellon University Qatar

Input Size (n) s the Counting Steps

passed integer value

def generate_multiplication_table(n):

~for i in range(l, n + 1): n iterations
14 14 for j in range(1, n + 1):
rint(f"{i} x {3} = {i*j}"
n(2n+3)<2n{ print(f"{i} x {3} = {i*J}")

1L
1 {_print()

Total Number of Steps: 1+ n (2n+3) = 2n?2+3n+1

14

Carnegie Mellon University Qatar

Practice

def dummyFunction(L):

x=1
for i in range(len(L)):
for a in "abcdefghijklmnopgrstuv”:
if(a==L[1]):
print(L[i]+x)
else:
return 0

return 1

15 5 : o
Carnegie Mellon University Qatar

Practice

def dummyFunction(L):

x=1 #1 step
for i in range(len(L)): # 1,1, niterations
for a in "abcdefghijklmnopqgrstuv": # 22 iterations
if(a==L[i]): # 1 step --- always
print(L[i]+x) # 1 step --- case 1 if
else: # 1 step --- case 2 else

return 0 # 1 step --- case 2 else

update a --- 1 step
update i -— 1 step

return 1 # 1 step — case not else

If-else: 2

For a loop: 22* (1+1 +1)= 66

Foriloop: 1+ n*67 + 1= 67n+2

Total= 67n+2+2= 67n+4 e dgdyelag al =i o la

1 E s 3
° Carnegie Mellon University Qatar

Python Built-Ins Cost

The efficiency of the built-in functions in Python will affect
the efficiency of the functions they are used in.
(Built-in Functions Efficiency Table)

Dictionaries: d is a dictionary with N key-value pairs

Total Steps: 3n + 2

Function/Method Complexity Code Example
e T o e
L o e def func6(lst):
: Membership o(1) : key in d
1
I : value = d[key] d = { } # 1 Step
[v EESERCRIAR for i in 1st: # niterations
I .
' | .
: Set [tem o(1) : d[key] = value C - d . get (1) @) # 1 Step
I 1 —
: Delete Item o(1) : del d[key] d [1] - C+1 # 1 Step
'r'___I # 1 Step
| Clar o | oot return d # 1 step
1
: Copy O(N) : d.copy()
1

L 1J=J$\334J-m5\—L41[—'='°—9—=[4-

17 5 : o
Carnegie Mellon University Qatar

https://www.cs.cmu.edu/%7E112q/notes/efficiency.html

Python Built-Ins Cost

The efficiency of the built-in functions in Python will affect

the efficiency of the functions they are used in.

(Built-in Functions Efficiency Table)

def func4(lst):

s = set(lst) #n steps

if 4 in s: #1 step -- always
print("hi") # 1 step —casef
return True # 1 step—casef

return False # 1 step — case2

Total steps: n+ 3

Function/Method

Sets: s is a set with N elements

Complexity

P — - - -

Intersection

Difference

O(len(s) + len(t))

O(min(len(s), len(t)))

P —

s.add(elem)

s.remove(elem)
s.discard(elem)

s|t

s&t

s.copy()

Code Example

https://www.cs.cmu.edu/%7E112q/notes/efficiency.html

Lists: L is a list with N elements

Function/Method Complexity Code Example
__ :
: Len o len(L) :
: |
I
: Append o(1) L.append(value) I
I
o DI S |
- - - - -—---—-—-—-—-—---=--=- 1
: Membership Check O(N) item in L :
[}
1 |
Lists o B -
d Pop Last Value o) L.pop()
p Pop Intermediate Value O(N) L.pop(index)
Sets/Dicts
Count values in list O(N) L.count(item)
5 1
I Insert O(N) L.insert(index, value) I
[|
- _ e e e e e e L 1
Get value 0(1) value = L[index]
Set value o(1) L[index] = value
__ |
|
Remove O(N) L.remove(value) 1 ,.'1[5“ 5 |_\

What is this O that appears
with the complexity value

20 5 : o
Carnegie Mellon University Qatar

lgnoring Lower Order Terms

* Consider the following example complexity (steps count)
* N2+ 100N + 500
* 5N2 +2N+3

* We say that N2 is the highest order term. This is the term that grows the fastest.
* The rest of the terms are called lower order terms

* What would happen if we remove lower order Terms?

5N2+2N +3
5N?2

1.5-10° A

5.0-108 ~

0 5000 10000 15000
N

In general, we ignore lower order terms for efficiency because for
large inputs, they make very little difference in the total. Loisdyalon s alees & 05

Carnegie Mellon University Qatar

lgnoring Lower Order Terms

* We say that N? is the highest order term. This is the term that grows the fastest.
* The rest of the terms are called lower order terms

* In general, we ignore lower order terms for efficiency because for large inputs, they
make very little difference in the total.

This is called BigO

The notion we use to describe the efficiency of a program,
without considering lower order terms or coefficients.

o igdyglagy il =i oLy

2 Carnegie Mellon University Qatar

BigO Function Families

We define a function family by the
highest order term of a function
without any coefficients.

« For example, the N2 (quadratic)
function family, contains all the
functions where the highest order
term is N2.

« Example functions that belong to
the N2 function family
« N2+3N+25
« 3N? +30
« 100N2+N

Worse:
O(n!)

Exponential - O(2”n)

computations (Steps)

Quadratic - O(n”2)
_ Log-Linear - O(n log(n))

Logarithmic - O(log(n))

Constant - O(1)

Input Size n

o igdyglagy il =i oLy

> Carnegie Mellon University Qatar

Big O — Ignoring Constants

— 100N

—_— N

1.5-10° ~

Multiplying by a constant does not change the
relationship between the function families.

* A faster growing function family will always
eventually overtake a slower growing function

family.
This is why we ignore coefficients for efficiency

and function families. |
(I) 1(I)0 2(I)O 3(I)0 4(')0

1.0-10° A

Steps

5.0-10% A

Does this mean you can change your algorithm'’s
function family by just changing the hardware?

Running on a faster machine, can speed up our program by a constant factor.

You will not change your algorithm's function family by changing the hardware

24 . : o
Carnegie Mellon University Qatar

Practice

S’23 Quiz Question

Which Step 1. (3 points) Short Answer: Consider the following code:

highlights def f(a):
efficiency t=0 #1
difference for for e in a: #n
these data if tin a: #77
structures?? tortl #l-caself update e --- 1 step

return t # 1

Big-O time efficiency of the function if:
(a) aisa list O(N2)

(b) ais a set O(N)

(c) aisadict _ O(N)

25 . : o
Carnegie Mellon University Qatar

Practice — Free Response

mostCommonName(L)

Write the function mostCommonName, that takes a list of names (such as ["Jane", "Aaron", "Cindy", "Aaron"], and
returns the most common name in this list (in this case, "Aaron"). If there is more than one such name, return a set
of the most common names. So mostCommonName(["Jane", "Aaron", "Jane", "Cindy", "Aaron"]) returns the set
{"Aaron", "Jane"}. If the set is empty, return None. Also, treat names case sensitively, so "Jane" and "JANE" are
different names. You should write three different versions, one that runs in O(n**2), O(nlogn) and O(n).

def mostCommonName(L):
return 42 # place your answer here!

def testMostCommonName():

print("Testing mostCommonName()...", end="")

assert(mostCommonName(["Jane", "Aaron", "Cindy", "Aaron"]) == "Aaron")
assert(mostCommonName (["Jane", "Aaron", "Jane", "Cindy", "Aaron"]) == {"Aaron",
"Jane"})

assert(mostCommonName ([“"Cindy"]) == "Cindy")

assert(mostCommonName (["Jane", "Aaron", "Cindy"]) == {"Aaron", "Cindy", "Jane"})
assert(mostCommonName([]) == None) print("Passed!")

testMostCommonName () Laga gl e o J]n

- Carnegie Mellon University Qatar

VoONOTUWMAWNR

T

This version uses nested loops to count occurrences of each name.
Tria
def mostCommonName _n2(names):
if not names:
return None

maxCount = @ # counter to keep track of the count of
mostCommonNames = set() # a set to track the most common names

iterate over list items
for name in names: # n steps
for each list item, count how many times it appears
count = names.count(name) # O(N)
if it's count is greater than maxCount
if count > maxCount:
maxCount = count # update maxCount

mostCommonNames = {name} # reset the set to the current name
elif count == maxCount: # it has same count as the maxCount (one of the most frequent)

mostCommonNames.add(name) # add it to the name

if len(mostCommonNames) == 1: # if one element, pop it and return it

return mostCommonNames.pop()

return mostCommonNames

27 E s TR
Carnegie Mellon University Qatar

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

AR

T

This version sorts the list of names and then counts consecutive occurrences.
L I |
def mostCommonName_nlogn(names):
if not names:
return None

names.sort()

maxCount = @
mostCommonNames = set()
currCount = 1

for i in range(l, len(names)):
if names[i] == names[i - 1]: # if curr element equal to prev
currCount += 1 # incremet currCOunter

else: # we hit a different name - we need to reasses previous sequence of consecutive occurances

if currCount > maxCount: # if it is more than max seq seen so far
maxCount = currCount # reset max val
mostCommonNames = {names[i - 1]} # create a new set with the prev element

elif currCount == maxCount: # if prev seq len is equal to the current max
mostCommonNames.add(names[i - 1]) # add prev to the set

currCount = 1 # reset the curr seq counter to 1

We always reassessed the prevSequence when we hit a new different element
Check the last name

if currCount > maxCount:
mostCommonNames = {names[-1]}

elif currCount == maxCount:
mostCommonNames.add(names[-1])

pop last item if it is one element and return it
if len(mostCommonNames) ==

return mostCommonNames.pop()

return mostCommonNames

o igdyglagy il =i oLy

Carnegie Mellon University Qatar

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

T

This version uses a dictionary to count occurrences of each name.
T
def mostCommonName_n(names):
if not names:
return None

create dictionaries to track the words and their counts
nameCount = {}

maxCount = ©

mostCommonNames = set()

iterate over list items
for name in names: # N
update the current name count value (get the value, return o if not there) + 1
nameCount[name] = nameCount.get(name, 0) + 1
if current name count > maxCount
if nameCount[name] > maxCount:
update max coutn value
maxCount = nameCount[name]
create a set with that name
mostCommonNames = {name}
if it is equal..
elif nameCount[name] == maxCount:
add the element to the set
mostCommonNames .add(name)

if one element, pop it and return it
if len(mostCommonNames) ==

return mostCommonNames.pop()

return mostCommonNames

o igdyglagy il =i oLy

Carnegie Mellon University Qatar

What is Log?

Worse:
i i A
O(n!) Exponential - O(2"n) Quadratic - O(n"2)

_ Log-Linear - O(n log(n))

L.sort() & sorted(L)
take O(nlogn)

computations

Logarithmic - O(log(n))

Constant - O(1)

Input Size n

o igdyglagy il =i oLy

30 — —
Carnegie Mellon University Qatar

What is Log?

Think of it as repeated division

For (log N), Starting at the number N, How many
times do we need to divide by 2 togetto 1

Log(8) = ??

8/2=4
4/2=2
2/2=1

Log (8)=3

31 5 : o
Carnegie Mellon University Qatar

What is Log?

def repeatedDiv(L):
Think of it as repeated division

Starting at the number, How many times do we n= len(L)
need to divide by 2togetto 1

while(n > 0):

Often come up in code when we are repeatedly L[n]+=100
cutting our input size (n) in half n=n//2
return L

32 5 T "
Carnegie Mellon University Qatar

Real Algorithm Example

L=0 Mid R=6
1 2 3 4 6 7 9 Target = 6
@ 4<6
L=4 Mid R=6
6 7 9
@ 7>6
L=4, R=4
6
|
Binary Search

Why is it O(LogN) 22?

At every iteration, you are getting rid of half of the list

So you are repeatedly dividing the input size by:half e e

Carnegie Mellon University Qatar

Why is Log Fast?

* We can see that log takes big numbers and
converts them into much smaller numbers

« So if your algorithm has log(n) complexity, this
means that if your input size is:
 Thousand — 10 steps
* million — it will only take 20 steps

 Billion- 30 steps
 Trillion — 40 steps

* Your algorithm will run very fast for large inputs.
 Logs are very small

o g dslag il =i 2 aly

Carnegie Mellon University Qatar

Recap

Steps Counting gives a standard way to assess time efficiency of an algorithm regardless of the hardware on which the
algorithm is running

* While elapsed time for a given algorithm varies depending on different factors such as hardware specifications,
operating system, and resource utilizations.

Two rules for counting steps
» A step takes constant amount of time (i.e. time doesn’t increase as the input size (called n) increases)
* Generally, A line of code is a single step if the whole line runs in constant time

We consider highest order term in an efficiency function and ignore lower order terms
* because for large inputs, they make very little difference

BigO is The notion we use to describe the efficiency of a program, without considering lower order terms or coefficients.

We define a function family by the highest order term of a function without any coefficients (Big O function families)
* For example, the N2 (quadratic) function family, contains all the functions where the highest order term is N2.

Built-in Functions Efficiency Table

Multiplying by a constant does not change the relationship between the function families.

Running the program on a faster hardware only improves time performance by a constant factor

o igdoslagy il =iaaly

2 Carnegie Mellon University Qatar

https://www.cs.cmu.edu/%7E112q/notes/efficiency.html

	Fundamentals of Programming & Computer Science�CS 15-112�
	There are Many Ways to Solve Any Given Problem
	What is Efficiency?
	Why Care About Time Efficiency?
	How to Assess Time Efficiency?
	Why isn’t the elapsed time for an algorithm constant?
	How to Assess Time Efficiency?
	Counting Steps
	Counting Steps
	Counting Steps
	Counting Steps
	Counting Steps
	Counting Steps
	Counting Steps
	Practice
	Practice
	Python Built-Ins Cost
	Python Built-Ins Cost
	Lists Compared to Sets/Dicts
	What is this O that appears with the complexity value
	Ignoring Lower Order Terms
	Ignoring Lower Order Terms
	BigO Function Families
	Big O – Ignoring Constants
	Practice
	Practice – Free Response
	Slide Number 27
	Slide Number 28
	Slide Number 29
	What is Log?
	What is Log?
	What is Log?
	Real Algorithm Example
	Why is Log Fast?
	Recap

