Fundamentals of Programming
and Computations
CS 15-112
Advanced Python Topics:
Distributed Computing
April 21, 2024
Hend Gedawy

Pedgdgelagy gl ol

Carnegie Mellon University Qatar

Outline

* Motivation
* Examples of distributed systems
* Building and running a distributed computing system

* Demo

Pedgdgelagy gl ol

Carnegie Mellon University Qatar

A Common Theme is Data

Ao dgdgslagy glemi o aly

Carnegie Mellon University Qatar

A Common Theme is Data

Data Generated Per Year Proportion of Internet Data Traffic
200 181 3.74% _<73%—\13|9%/‘0'31%
180 M 4.54%
160 Y] 5.35%
140 []
» 120 5.67%
‘E 120 —
o) 97
8 100 I '
@ 80 ”
N 64.2
60
41
40 o B
20 (e o 125 155 18
2 |i| |_| M |_| |_| |_| H m Video = Social = Gaming Web Browsing
O —
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021|2022 2023024 2025 " Messaging = Marketplace m File Sharing = Cloud
Yea'r/_/ = VPN = Audio
~70% of the world’s data was generated only over the past two years
o igdgglagy gl =i o aly

NOTE: Slide borrowed from 15-440 Distributed Systems course offered by Dr. Mohammed Hammoud Carneg ie MGHOII UlliVeI‘Sity Qatar

—

What Do We Do With All This Data

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

What Do We Do with This Data?

7AYeR f‘\ﬂ

7R

learn from this data and be able to :

Historical Current Future
— C
i data data forecast

f s Pl 2\ =\

Recognize Patterns and relationships /, =L
between data [EEEEEE
(App. e.g. predicting and diagnosing diseases) i ' H
O ©) ,-"J' ’ 1'[| % I‘ -
O
O O v
@) o O

o0 o + Make predictions about future events based on
* past observations
+* * (App. e.g. forecasting energy demand)
R
* 4
Classify data into different categories or classes
based on their features

(App. e.g. better environment interaction and
navigation for robots)

Build algorithms and techniques that enable computers to

OUTLIERS ﬁ@
* [€]

Identify anomalies and outliers

(App. e.g. detecting scams/misleading financial
operations)

High
latitude . _W .
longitude '"-m-—mu.
median_income w—--—— PR — o
population *" [
@
total_rooms *‘ %
total_bedrooms -* hid
housing_median_age -+-..
households . + .

Low
—150006-100000-50000 0 50000 100000 150000 200000

SHAP value (impact on model output)

Determine the importance of different factors
or variables in predicting the target outcome

(App. e.g. Identifying dominant factors for
telecommunication customers churn)

Example: ChatGPT

* Al language model developed by OpenAl

* Created using large-scale datasets
obtained from various sources, including
books, websites, and other texts

* |t learned from this data to develop a
wide-ranging understanding of human
language.

* generating human-like text responses to
questions,

@ » ChatGPT
) ®

=@

e providing information,

* engaging in conversations

» offering assistance on a wide range of topics.

P dgdgglagy ale=ia ol

Carnegie Mellon University Qatar

— x

}/ :))JIHK\H% —
Where To Process All This Data?

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Option 1: Hardware Upgrades

* E.g., faster CPU, more memory,
and/or larger disk

* This is What we Call Vertical Scaling

0

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Option 1: Hardware Upgrades

le+09- Training FLOPs Scaling for SOTA Models —

i []
1e+°8_§ Transformer: 750x [/ 2 yrs : _ | n d IVI d U a I CO m Ute rS

Microsoft T-NLG
] Moore's Law: 2x [2 yrs ® o
Megatron LM M ' !
8 e 20 still suffer from limited
&

le+06

resources with respect

Training Compute (PFLOPs)

InceptionV3 V4
i to the scale of today’s
] Transformer.
. Seq2Seq ResNet ResNext []
-~ : i problems
] VGG DenseNet ELMo
] Y []
1e+03 alexNet
] ®
le+02
-— 7
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
YEAR

Figure 1: The amount of compute, measured in Peta FLOPs, needed to train SOTA models, for different CV,
NLP, and Speech models, along with the different scaling of Transformer models (750x/2yrs)** [Source]

P dgdgglagy ale=ia ol

Carnegie Mellon University Qatar

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Option 2: Adding More Machines

Option 1: Vertical Scaling
(Upgrade an Instance;
RAM, CPU, etc.)

1
3z

Option 2: Horizontal Scaling
(Add more instances)

» ..2gie Mellon University Qatar

Option 2: Adding More Machines

le+09- Training FLOPs Scaling for SOTA Models
GPT-3
. . . .
— According to unverified
Transformer: 750x / 2 yrs MicrosafPr-NLG i .
| Moore's Law: 2x /2 yrs o o9 information lea kS, GPT-4 was
Megatron LM . . 1.
g 1e+07- xm:.: Wavzyes 2.0 trained on about 25,000 Nvidia
g E
z i ° A100 GPUs for 90-100 days.
k=i le+°6_-:- Xception BERT []
9] P ® MoCo ResNet50
E‘ InceptionV3 .
§1e+05- ° P Assuming that the GPUs were
2 secaseq meser Restox i ol installed in Nvidia HGX servers
= - ® O .
g VGG DenseNet o | which can host 8 GPUs each,
. ® ! .
S — . | | meaning 25,000 / 8 = 3,125
| Y= servers were needed.
1e+02—§
S e T I) PR ey L N N S S SN S SR AN S L S AL S
2012 2013 2014 2015 2016 YEAR2017 2018 2019 2020 2021 source

Figure 1: The amount of compute, measured in Peta FLOPs, needed to train SOTA models, for different CV,
NLP, and Speech models, along with the different scaling of Transformer models (750x/2yrs)** [Source]

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

https://towardsdatascience.com/the-carbon-footprint-of-gpt-4-d6c676eb21ae#:%7E:text=The%20electricity%20consumption%20of%20GPT%2D4&text=According%20to%20unverified%20information%20leaks,8%20%3D%203%2C125%20servers%20were%20needed.
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Examples of Systems that Leverage
Distributed Computing

Il » @
g8 § 8
;
Y

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

°.

X 4

S- ¢ —e—>
o o)

How and Where is
Distributed Computing Run

Distributed Computing Process

g 1) Job Request
B

Internet

(lient

(Workers/Slaves)
4) Process/
. C— og) Compute
2) Split & Schedule
Job

?

7) Response

Task 2 - @ 4) PFOCESS/

«— 0" Compute
5) Partial Result 2 EEE

V4
I ot
(Master/ Controller) %}
&//?
<,
7 : 00)_
/[o’

6) Integrate EEE 4) Process/
Partial Results v Compute

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Where is Computing Distributed Hosted
Different Paradigms

Cloud Computing (Data Centers)

[N,

E Mids‘: rrrrrrrrrrrr g Q
e T S
E—i=as B *"3" ~E
o R E
E ‘x“_ uuuuu o
E - E llllllll i g . -
e = e dgdyelagy gl o aly

Carnegie Mellon University Qatar

What It Takes To Build A
Distributed Computing System

Distributed Computing System
Requirements

A way to express the problem in terms of parallel processes and execute them on
different machines (Programming and Concurrency Models)

A way to organize processes (Architectures)

A way for distributed processes to exchange information (Communication
Paradigms)

A way to locate and share resources (Naming Protocols)

P dgdgglagy ale=ia ol

NOTE: Slide borrowed from 15-440 Distributed Systems course offered by Dr. Mohammed Hammoud Carneg ie Mellon University Qatar

Distributed Computing Sytems
Requirements

A way for distributed processes to cooperate, synchronize with one another, and
agree on shared values (Synchronization)

A way to reduce latency, enhance reliability, and improve performance (Caching,
Replication, and Consistency)

A way to enhance load scalability, reduce diversity across heterogeneous systems,
and provide a high degree of portability and flexibility (Virtualization)

A way to recover from partial failures (Fault Tolerance)

Pedgdgelagy gl ol

NOTE: Slide borrowed from 15-440 Distributed Systems course offered by Dr. Mohammed Hammoud Carnegie Mellon University Qatar

Distributed Systems: Two Options

" WWe can create a custom distributed system (or program) for each
new algorithm

= Cumbersome!

= Or utilize modern distributed frameworks, which:

= Relieve programmers from worrying about the many difficult aspects of
distributed systems

= Allow programmers to focus on ONLY the sequential parts of their
programs

= E.g., MapReduce (or Hadoop), GraphLab (Turi later), and Ray

NOTE: Slide borrowed from 15-440 Distributed Systems course offered by Dr. Mohammed Hammoud Carnegie Mellon Un.iversity Qatar

Framework

°g° RAY

https://www.ray.io/

Companies Using Ray - Examples

OpenAl

VISA ChatGPT4.0

== Microsoft

AAshopify (intel)

Uber <3
(:’L amazon . NVIDIA.
Alibaba.com 5 ERICSSON
Y instacart Loginless almenls

Carnegie Mellon University Qatar

Python - Ray

Ray API allows serial applications to be
parallelized without major modifications.

Function Task
Class P ~ > o% Actor

. Immutable
Object Object

Ray takes the existing concepts of functions and classes and
translates them to the distributed setting as tasks and actors.

P dgdgglagy ale=ia ol

Carnegie Mellon University Qatar

Ray Cluster: Master-Slave Architecture

Head node

Worker Node (1) Worker Node (n)
Driver | Worker
Worker |......| Worker Worker |.....| Worker
= | Scheduler
%J‘ +« | Scheduler + | Scheduler
o Q E
X | Object Store F P
g Object Store cc | Object Store
Global Control
Store (GCS)
o i gdgglagy al =i o aly

Carnegie Mellon University Qatar

Setting Up & Running A Program on Ray
Cluster

* Make sure ray is stopped in all nodes (sudo ray stop --force)

e Start Ray @ Head Node:

* sudo ray start --head --include-dashboard 1 --dashboard-host 0.0.0.0

* Include more worker machines:
* ssh to the worker node and start ray using the following command:

sudo ray start --address=‘headNodelP:headPortNum’

* Run the program @Head Node:

sudo python3 <Program python file> <Program Parameters>

* To view the dashboard of your cluster, go to your web browser and put
headNodelP{dashboardPortNumber| « Given when head started

* When Done, run (sudo ray stop --force) on all nodes

P dgdgglagy ale=ia ol

Carnegie Mellon University Qatar

Our Ray Cluster — Setup

Head node Worker Node (1) Worker Node (n)
Driver || Worker Worker |...... Worker Worker |...... Worker
I Scheduler = | Scheduler | Scheduler
) > >
@ | Object Store & | Object Store o | Object Store
Global Control
Store (GCS)

Ray Cluster

<

Distributed System
o digdsslagy gl =i o ol

Carnegie Mellon University Qatar

Ray Dashboard

oéo Overview Jobs Serve Cluster Actors Metrics Logs L/
NODES
E Auto Refresh: .
Request Status: Node summary fetched.
Node Statistics
(ToTawxa | [Auvexs
Node List
Host Q P Q state ~ PageSize Q sortBy ~ Reverse: 1B TABLE | CARD
1
Host / Worker Process name State D IP/PID Actions CPU Memory (%) GPU @ GRAM Object Store Memory Disk(root) (@ Sent Received Logical Resources (%)
> 15440-ray-01 | ALIVE | defeb... 172.20.247.85 (Head) Log 2% 860.19MB/7.56GB(11.1%) N/A N/A 0.0000B/2.11GB(0.0%) 15.92GB/18.60GB(90.3%) 10.07KB/s 6.34KB/s 0.0/4.0 CPU 0B/4.21.. Expand
> ‘ ALIVE ‘ 16646... Log 0% N/A N/A 0.0000B/2.16GB(0.0%) 0.0000B/s 0.0000B/s 0.0/4.0 CPU 0B/5.04... Expand
> ‘ ALIVE ‘ 40e2f... Log 0% N/A N/A 0.0000B/2.16GB(0.0%) 0.0000B/s 0.0000B/s 0.0/4.0 CPU 0B/5.04.. Expand
> 15440-ray-02 [(Auve | 7a8c3... 172.20.247.86 Log 0.8% 439.58MB/7.56GB(5.7%) N/A N/A 0.0000B/2.16GB(0.0%) 51190B/18.606B(29.4%) 5.02KB/s 1.96KB/s 0.0/4.0 CPU 0B/5.05.. Expand

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Sequential to Parallel in Ray

import time
def f(1i):

time.sleep(1)
return i

tl= time.time()

O <l w1 B wpmBE

9 results=[]

10 for i in range(4):

11 results.append(f(1))

12

13 print("results: ", results)

14 print("sequential time: ", time.time()-t1)

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Sequential to Parallel in Ray
o [
o [

F(2) »
=

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

e F2 R Fo [N
N

™™

N

(==
(=0T
(==L
(==
(=0T
(==L
(==
(=0T
(==L

0O~ 1 B W MNP

N NN MNNMNMNREREFRRRRERFRPRREREIREBR
kB wWMNRE SOOI b WwWwMPpRE®W

Sequential to Parallel in Ray

import ray

import time

ray.init() 4*"""""””””/”””’,,,,———’
@ray.remote
def f(i):

time.sleep(1)
return 1

start_time= time.time()

futures= [firemote(i) for i in range(4)]

print("DOING OTHER TASKS")
print(“"curr time: ", time.time()- startTime)

result = ray.get(futures)
print("Result:", result)

print(“"completion time: ", time.time()-start_time)

Remote function: can be executed remotely and
asynchronously

4 copies of f are executed in parallel (on different machines).

The function call returns immediately a reference to the eventual output

The actual function execution (i.e. Task) is taking place in the
background

It is called a future, because we don’t get the
output immediately, we get a promise that we
will get the output at some point

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Application — Most Frequent Word
(Sequential Implementation)

import time

1

2

3 def mostFrequentWordvl(wordList):
4 maxword = None

5 maxcnt = ©

6 for word in wordList:

7 cnt = wordList.count(word)
8 if cnt > maxcnt:

S maxcht = c¢cnt

10 maxword =word

11 return (maxword, maxcnt)

12

13

14

15

16

17 def loadBook(filename):

18 with open(filename,"r", encoding='utf-8') as f:
19 theText = f.read()

20 toRemove = [",",";",". ", "\"", "\ ", "\n\"", " \l".v"!"J"(":")":"?"J"“":"l":l"l.v"]")" ":":":l*l]
21

22 theText = theText.lower()

23

24 for badChar in toRemove:

25 theText = theText.replace(badChar,” ")

26 return theText.split()

27

28 allWordsList = loadBook("alice.txt™)

29 print(f"Loaded text with {len(allWordsList)} words")
30

31 start = time.time()

32 ans = mostFrequentWordvl(allWordsList)

33 end = time.time()

34 elapsedl = end - start ._np_.“jjls n_9_db.

35 print("List-based\nAnswer {} in {:0.4f} seconds".format(ans, elapsedl)) 1 R :
B varnegie viellon University Qatar

Application — Most Frequent Word
(How to Parallelize)

List of all words
in the »
{)

document

» (Most Frequent
Word, its Count)

mostFrequentWord(l)

11,1,2,3,4,1,2,2,3,4,1,2,3,3,4,1,2,3,4,1] (1,6)

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Application — Most Frequent Word
(How to Parallelize)

List of all words
in the
document

(Most Frequent

Word, its Count)

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Application — Most Frequent Word
(How to Parallelize)

mostFrequentWord(subListl)
[1,1,2,3,4]

List of all words

| mostFrequentWord(sublist2)
[1I2I2I3I4]

in the
document

[1,1,2,3,41,2,2,3,4,1,2,3,3,4,1,2,3,4,1]
mostFrequentWord(subList3)
[1,2,3,3,4]

mostFrequentWord(subList4)
[1,2,3,4,1]

,J_...n\g_.: =i o uly

CarmegieMetlon University Qatar

Application — Most Frequent Word

List of all words

in the
document

[1,1,2,3,41,2,2,34,1,2,3,3,4,1,2,3,4,1]

Each Node Returned the
most Common Word and its
count in the assigned sublist

Now we need to know the
count of each of these most
common words [1,2,3] in
the sublist assigned to each
node (Another Distributed
Computing Round)

o digdsslagy gl =i o ol

Carnegie Mellon University Qatar

Application — Most Frequent Word
(Another Distributed Round)

freqWordsCount(sublListl)
[1,1,2,3,4]
[1,2,3]

Each node again
receives the sublist of
words and a list of the
most common words

[1,2,3]

List of all words freqWordsCount(sublList2)

[1I2I2I3I4]
[1,2,3]

A 4

in the
document

Each Node Counts the
number of occurrences
of each of the
common words

[1,1,2,3,41,2,2,3,4,1,2,3,3,4,1,2,3,4,1]
freqWordsCount(sublList3)
[1,2,3,3,4]
[1,2,3]

freqWordsCount(sublList4)

[1,2,3,4,1] S
[1,2,3] lon University Qatar

Application — Most Frequent Word
(Aggregating Results)

{1:2, 2:1, 3:1}

The master integrates the
results by summing the
counts of each word and
return the most common one

List o.f atILwords S S N (Most Frequent
in the o = f Word, its Count)
document g

(1,6)

[1,1,2,3,41,2,2,34,1,2,3,3,4,1,2,3,4,1]

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

1OV wN R

1OV wN R

NoOoubhWwWRNREO® WX

ERADAEDEERRERERELEDWWWWWWWWW

vl Ul unou
NF ® 00

S W

u
wn

N

o N)W e Y, IV, I IV
AUV AR WNRE®WN-NOT

o 0

import time
import ray

ray.init()

ost Frequent Word

maxw=""
for d in 1:
for w in d:

finalD[w]= finalD.get(w, 0)+d[w] o
if maxW==""' or finalD[w] > finalD[maxW]: P
maxh= w

return maxw, finalD[maxw]

@ray.remote

@
def mostFrequentWordvl(wordList):
maxword = None
maxcnt = @

for word in wordList:
cnt = wordList.count(word)
if cnt > maxcnt:

Python Functions)

@ray.remote
def freqWordsCount(mostFregWords, wordList):
d={}
for w in mostFreqWords:
d[w]= wordList.count(w)
return d

def loadBook(filename):
with open(filename,"r", encoding='utf-8') as f:
theText = f.read()
tOReMOVE = [M,™,™ ", ™., "\, T\ T\t T ey iy m e e wn g

theText = theText.lower()

for badChar in toRemove:
theText = theText.replace(badChar,"” ™)
return theText.split()

allwordsList = loadBook("alice.txt™)
print(f"Loaded text with {len(allWordsList)} words")

start = time.time()
1= len(allWordsList)
slicel= 1//4

futuresl = [mostFrequentWordvl.remote(allWordsList[i:i+slicelL]) for i in range(@, 1, slicel)]
initialResults= ray.get(futuresl)
mostCommonInAllNodes= set([t[@] for t in initialResults])

futures2 = [freqWordsCount.remote(mostCommonInAllNodes, allWordsList[i:i+sliceL]) for i in range(®@, 1, slicel)]

finalResults= ray.get(futures2) | |
ans= finalMerge(finalResults) M JEJ_'!JP_'"JI IJ—H]
end = time.time()

elapsedl = end - start 5gi6 Mell()n UIliVeI‘Sity Qatal'

print("List-based\nAnswer {} in {:0.4f} seconds".format(ans, elapsedl))

[N

w

NROWONNOOU B

NNNRBRRERRBRRBRRRR
NRER O®WVONGOWBW

w

NRNRNNRNRN

WWwwwww
WRNRKER®WW-NOU A

w

w w

w
NRO®WOOLNOU A

3

50

5
5
5
5
5
5
5
5
5
6

(=Y

NNNNOOO OO OO O
UNROOUONOTUNHAWRNROOVUDNOU B W

~
(LN

import time
import ray

ray.init()

@ray.remote
class Node(object):

def __init__(self, sublist):
self.wordList= sublist

def mostFrequentWordvl(self):
maxword = None
maxcnt = 8
for word in self.wordlList:
cnt = self.wordList.count(word)
if cnt > maxcnt:
maxcnt = cnt
maxword =word
return (maxword, maxcnt)

def freqWordsCount(self, mostFreqgWords):
d={}
for w in mostFregWords:
d[w]= self.wordList.count(w)
return d

def finalMerge(1)

finalD={}
maxi=""
for d in 1:

for w in d:
finalD[w]= finalD.get(w, ©)+d[w]
if maxW=='' or finalD[w] > finalD[maxW]:
maxh= w

return maxW, finalD[maxW]

def loadBook(filename):
with open(filename,"r
theText = f.read()
toRemove = ["

, encoding='utf-8') as f:

N N T T a8 e, e

»
theText = theText.lower()

for badChar in toRemove:
theText = theText.replace(badChar,” ")
return theText.split()

allWordsList = loadBook("alice.txt")
print(f"Loaded text with {len(allWordsList)} words")

start = time.time()
1= len(allWordslList)

nodes= []
slicel= 1//4

for i in range(e, 1, slicel)
nodes.append(Node.remote(allWordsList[i:i+slicel]))

futuresl = [nodes[i].mostFrequentWordvl.remote() for i in range(4)]
initialResults= ray.get(futuresl)
mostCommonInAllNodes= set([t[@] for t in initialResults])

futures2 = [nodes[i].fregWordsCount.remote(mostCommonInAllNodes) for i in range(4)]
finalResults= ray.get(futures2)

ans= finalMerge(finalResults)

end = time.time()

elapsedl = end - start

print("List-based\nAnswer {} in {:8.4f} seconds".format(ans, elapsedl))

Most Frequent Word
Solution —

Using Ray Actors
(Python Classes)

P dgdgglagy ale=ia ol

Carnegie Mellon University Qatar

	Fundamentals of Programming and Computations�CS 15-112�Advanced Python Topics: Distributed Computing
	Outline
	A Common Theme is Data
	A Common Theme is Data
	What Do We Do With All This Data
	What Do We Do with This Data?
	Example: ChatGPT
	Where To Process All This Data?
	Option 1: Hardware Upgrades
	Option 1: Hardware Upgrades
	Option 2: Adding More Machines
	Option 2: Adding More Machines
	Examples of Systems that Leverage Distributed Computing
	How and Where is Distributed Computing Run
	Distributed Computing Process
	Where is Computing Distributed Hosted�Different Paradigms
	What It Takes To Build A Distributed Computing System
	Distributed Computing System Requirements
	Distributed Computing Sytems Requirements
	Distributed Systems: Two Options
	Framework
	Companies Using Ray - Examples
	Python - Ray
	Slide Number 24
	Ray Cluster: Master-Slave Architecture
	Setting Up & Running A Program on Ray Cluster
	Our Ray Cluster – Setup
	Ray Dashboard
	Sequential to Parallel in Ray
	Sequential to Parallel in Ray
	Sequential to Parallel in Ray
	Application – Most Frequent Word�(Sequential Implementation)
	Application – Most Frequent Word (How to Parallelize)
	Application – Most Frequent Word�(How to Parallelize)
	Application – Most Frequent Word�(How to Parallelize)
	Application – Most Frequent Word
	Application – Most Frequent Word�(Another Distributed Round)
	Application – Most Frequent Word�(Aggregating Results)
	Most Frequent Word Solution –� Using Ray Tasks (Python Functions)
	Most Frequent Word Solution – �Using Ray Actors (Python Classes)

