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Outline

* Motivation
* Examples of distributed systems
* Building and running a distributed computing system

* Demo
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A Common Theme is Data
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A Common Theme is Data

Data Generated Per Year Proportion of Internet Data Traffic
200 181 3.74% _<73%—\13|9%/‘0'31%
180 M 4.54%
160 Y] 5.35%
140 []
» 120 5.67%
‘E 120 —
o) 97
8 100 I '
@ 80 ”
N 64.2
60
41
40 o B
20 (e o 125 155 18
2 |i| |_| M |_| |_| |_| H m Video = Social = Gaming Web Browsing
O —
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021|2022 2023024 2025 " Messaging = Marketplace  m File Sharing = Cloud
Yea'r/_/ = VPN = Audio
~70% of the world’s data was generated only over the past two years
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What Do We Do With All This Data
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What Do We Do with This Data?
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learn from this data and be able to :

Historical Current  Future
— C
i data data  forecast
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Recognize Patterns and relationships /, =L
between data [EEEEEE
(App. e.g. predicting and diagnosing diseases) i ' H
O ©) ,-"J' ’ 1'[ | % I‘ -
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o0 o + Make predictions about future events based on
* past observations
+* * (App. e.g. forecasting energy demand)
R
* 4
Classify data into different categories or classes
based on their features

(App. e.g. better environment interaction and
navigation for robots)

Build algorithms and techniques that enable computers to

OUTLIERS ﬁ@
* [€]

Identify anomalies and outliers

(App. e.g. detecting scams/misleading financial
operations)
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SHAP value (impact on model output)

Determine the importance of different factors
or variables in predicting the target outcome

(App. e.g. Identifying dominant factors for
telecommunication customers churn)




Example: ChatGPT

* Al language model developed by OpenAl

* Created using large-scale datasets
obtained from various sources, including
books, websites, and other texts

* |t learned from this data to develop a
wide-ranging understanding of human
language.

* generating human-like text responses to
questions,

@ » ChatGPT
) ®

=@

e providing information,

* engaging in conversations

» offering assistance on a wide range of topics.
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Where To Process All This Data?
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Option 1: Hardware Upgrades

* E.g., faster CPU, more memory,
and/or larger disk

* This is What we Call Vertical Scaling

0
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Option 1: Hardware Upgrades

le+09- Training FLOPs Scaling for SOTA Models —
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Figure 1: The amount of compute, measured in Peta FLOPs, needed to train SOTA models, for different CV,
NLP, and Speech models, along with the different scaling of Transformer models (750x/2yrs)** [Source]
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https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Option 2: Adding More Machines

Option 1: Vertical Scaling
(Upgrade an Instance;
RAM, CPU, etc.)

1
3z

Option 2: Horizontal Scaling
(Add more instances)
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Option 2: Adding More Machines

le+09- Training FLOPs Scaling for SOTA Models
GPT-3
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Figure 1: The amount of compute, measured in Peta FLOPs, needed to train SOTA models, for different CV,
NLP, and Speech models, along with the different scaling of Transformer models (750x/2yrs)** [Source]
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https://towardsdatascience.com/the-carbon-footprint-of-gpt-4-d6c676eb21ae#:%7E:text=The%20electricity%20consumption%20of%20GPT%2D4&text=According%20to%20unverified%20information%20leaks,8%20%3D%203%2C125%20servers%20were%20needed.
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Examples of Systems that Leverage
Distributed Computing
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How and Where is
Distributed Computing Run




Distributed Computing Process

g 1) Job Request
B
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(Workers/Slaves)
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Job
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Where is Computing Distributed Hosted
Different Paradigms

Cloud Computing (Data Centers)
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What It Takes To Build A
Distributed Computing System




Distributed Computing System
Requirements

A way to express the problem in terms of parallel processes and execute them on
different machines (Programming and Concurrency Models)

A way to organize processes (Architectures)

A way for distributed processes to exchange information (Communication
Paradigms)

A way to locate and share resources (Naming Protocols)
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Distributed Computing Sytems
Requirements

A way for distributed processes to cooperate, synchronize with one another, and
agree on shared values (Synchronization)

A way to reduce latency, enhance reliability, and improve performance (Caching,
Replication, and Consistency)

A way to enhance load scalability, reduce diversity across heterogeneous systems,
and provide a high degree of portability and flexibility (Virtualization)

A way to recover from partial failures (Fault Tolerance)
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Distributed Systems: Two Options

" WWe can create a custom distributed system (or program) for each
new algorithm

= Cumbersome!

= Or utilize modern distributed frameworks, which:

= Relieve programmers from worrying about the many difficult aspects of
distributed systems

= Allow programmers to focus on ONLY the sequential parts of their
programs

= E.g., MapReduce (or Hadoop), GraphLab (Turi later), and Ray

NOTE: Slide borrowed from 15-440 Distributed Systems course offered by Dr. Mohammed Hammoud Carnegie Mellon Un.iversity Qatar




Framework

°g° RAY



https://www.ray.io/

Companies Using Ray - Examples

OpenAl

VISA ChatGPT4.0

== Microsoft

AAshopify  (intel)

Uber <3
(:’L amazon . NVIDIA.
Alibaba.com 5 ERICSSON
Y instacart Loginless almenls
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Python - Ray

Ray API allows serial applications to be
parallelized without major modifications.

Function Task
Class P ~ > o% Actor

. Immutable
Object Object

Ray takes the existing concepts of functions and classes and
translates them to the distributed setting as tasks and actors.
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Ray Cluster: Master-Slave Architecture

Head node

Worker Node (1) Worker Node (n)
Driver | Worker
Worker |......| Worker Worker |.....| Worker
= | Scheduler
%J‘ +« | Scheduler + | Scheduler
o Q E
X | Object Store F P
g Object Store cc | Object Store
Global Control
Store (GCS)
o i gdgglagy al =i o aly

Carnegie Mellon University Qatar



Setting Up & Running A Program on Ray
Cluster

* Make sure ray is stopped in all nodes (sudo ray stop --force)

e Start Ray @ Head Node:

* sudo ray start --head --include-dashboard 1 --dashboard-host 0.0.0.0

* Include more worker machines:
* ssh to the worker node and start ray using the following command:

sudo ray start --address=‘headNodelP:headPortNum’

* Run the program @Head Node:

sudo python3 <Program python file> <Program Parameters>

* To view the dashboard of your cluster, go to your web browser and put
headNodelP{dashboardPortNumber| « Given when head started

* When Done, run (sudo ray stop --force) on all nodes
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Our Ray Cluster — Setup

Head node Worker Node (1) Worker Node (n)
Driver || Worker Worker |...... Worker Worker |...... Worker
I Scheduler = | Scheduler | Scheduler
) > >
@ | Object Store & | Object Store o | Object Store
Global Control
Store (GCS)

Ray Cluster

<

Distributed System
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Ray Dashboard

oéo Overview Jobs Serve Cluster Actors Metrics Logs L/
NODES
E Auto Refresh: .
Request Status: Node summary fetched.
Node Statistics
(ToTawxa | [ Auvexs
Node List
Host Q P Q state ~  PageSize Q  sortBy ~ Reverse: 1B TABLE | CARD
1
Host / Worker Process name State D IP/PID Actions CPU Memory (%) GPU @ GRAM Object Store Memory Disk(root) (@ Sent Received Logical Resources (%)
> 15440-ray-01 | ALIVE | defeb... 172.20.247.85 (Head) Log 2% 860.19MB/7.56GB(11.1%) N/A N/A 0.0000B/2.11GB(0.0%) 15.92GB/18.60GB(90.3%) 10.07KB/s 6.34KB/s 0.0/4.0 CPU 0B/4.21..  Expand
> ‘ ALIVE ‘ 16646... Log 0% N/A N/A 0.0000B/2.16GB(0.0%) 0.0000B/s 0.0000B/s 0.0/4.0 CPU 0B/5.04... Expand
> ‘ ALIVE ‘ 40e2f... Log 0% N/A N/A 0.0000B/2.16GB(0.0%) 0.0000B/s 0.0000B/s 0.0/4.0 CPU 0B/5.04.. Expand
> 15440-ray-02 [(Auve | 7a8c3... 172.20.247.86 Log 0.8% 439.58MB/7.56GB(5.7%) N/A N/A 0.0000B/2.16GB(0.0%) 51190B/18.606B(29.4%) 5.02KB/s 1.96KB/s 0.0/4.0 CPU 0B/5.05.. Expand
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Sequential to Parallel in Ray

import time
def f(1i):

time.sleep(1)
return i

tl= time.time()

O <l w1 B wpmBE

9 results=[]

10 for i in range(4):

11 results.append(f(1))

12

13 print("results: ", results)

14 print("sequential time: ", time.time()-t1)
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Sequential to Parallel in Ray
o [
o [

F(2) »
=
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Sequential to Parallel in Ray

import ray

import time

ray.init() 4*"""""””””/”””’,,,,———’
@ray.remote
def f(i):

time.sleep(1)
return 1

start_time= time.time()

futures= [firemote(i) for i in range(4)]

print("DOING OTHER TASKS")
print(“"curr time: ", time.time()- startTime)

result = ray.get(futures)
print("Result:", result)

print(“"completion time: ", time.time()-start_time)

Remote function: can be executed remotely and
asynchronously

4 copies of f are executed in parallel (on different machines).

The function call returns immediately a reference to the eventual output

The actual function execution (i.e. Task ) is taking place in the
background

It is called a future, because we don’t get the
output immediately, we get a promise that we
will get the output at some point
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Application — Most Frequent Word
(Sequential Implementation)

import time

1

2

3 def mostFrequentWordvl(wordList):
4 maxword = None

5 maxcnt = ©

6 for word in wordList:

7 cnt = wordList.count(word)
8 if cnt > maxcnt:

S maxcht = c¢cnt

10 maxword =word

11 return (maxword, maxcnt)

12

13

14

15

16

17 def loadBook(filename):

18 with open(filename,"r", encoding='utf-8') as f:
19 theText = f.read()

20 toRemove = [",",";",". ", "\"", "\ ", "\n\"", " \l".v"!"J"(":")":"?"J"“":"l":l"l.v"]")" ":":":l*l]
21

22 theText = theText.lower()

23

24 for badChar in toRemove:

25 theText = theText.replace(badChar,” ")

26 return theText.split()

27

28 allWordsList = loadBook("alice.txt™)

29 print(f"Loaded text with {len(allWordsList)} words")
30

31 start = time.time()

32 ans = mostFrequentWordvl(allWordsList)

33 end = time.time()

34 elapsedl = end - start ._np_.“jjls n_9_db.

35 print("List-based\nAnswer {} in {:0.4f} seconds".format(ans, elapsedl)) 1 R :
B varnegie viellon University Qatar




Application — Most Frequent Word
(How to Parallelize)

List of all words
in the »
{)

document

» (Most Frequent
Word, its Count)

mostFrequentWord(l)

11,1,2,3,4,1,2,2,3,4,1,2,3,3,4,1,2,3,4,1] (1,6)
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Application — Most Frequent Word
(How to Parallelize)

List of all words
in the
document

(Most Frequent

Word, its Count)
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Application — Most Frequent Word
(How to Parallelize)

mostFrequentWord(subListl)
[1,1,2,3,4]

List of all words

| mostFrequentWord(sublist2)
[1I2I2I3I4]

in the
document

[1,1,2,3,41,2,2,3,4,1,2,3,3,4,1,2,3,4,1]
mostFrequentWord(subList3)
[1,2,3,3,4]

mostFrequentWord(subList4)
[1,2,3,4,1]

,J_...n\g_.: =i o uly
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Application — Most Frequent Word

List of all words

in the
document

[1,1,2,3,41,2,2,34,1,2,3,3,4,1,2,3,4,1]

Each Node Returned the
most Common Word and its
count in the assigned sublist

Now we need to know the
count of each of these most
common words [1,2,3] in
the sublist assigned to each
node (Another Distributed
Computing Round)
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Application — Most Frequent Word
(Another Distributed Round)

freqWordsCount(sublListl)
[1,1,2,3,4]
[1,2,3]

Each node again
receives the sublist of
words and a list of the
most common words

[1,2,3]

List of all words freqWordsCount(sublList2)

[1I2I2I3I4]
[1,2,3]

A 4

in the
document

Each Node Counts the
number of occurrences
of each of the
common words

[1,1,2,3,41,2,2,3,4,1,2,3,3,4,1,2,3,4,1]
freqWordsCount(sublList3)
[1,2,3,3,4]
[1,2,3]

freqWordsCount(sublList4)

[1,2,3,4,1] S
[1,2,3] lon University Qatar




Application — Most Frequent Word
(Aggregating Results)

{1:2, 2:1, 3:1}

The master integrates the
results by summing the
counts of each word and
return the most common one

List o.f atILwords S S N (Most Frequent
in the o = f Word, its Count)
document g

(1,6)

[1,1,2,3,41,2,2,34,1,2,3,3,4,1,2,3,4,1]
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import time
import ray

ray.init()

ost Frequent Word

maxw=""
for d in 1:
for w in d:

finalD[w]= finalD.get(w, 0)+d[w] o
if maxW==""' or finalD[w] > finalD[maxW]: P
maxh= w

return maxw, finalD[maxw]

@ray.remote

@
def mostFrequentWordvl(wordList):
maxword = None
maxcnt = @

for word in wordList:
cnt = wordList.count(word)
if cnt > maxcnt:

Python Functions)

@ray.remote
def freqWordsCount(mostFregWords, wordList):
d={}
for w in mostFreqWords:
d[w]= wordList.count(w)
return d

def loadBook(filename):
with open(filename,"r", encoding='utf-8') as f:
theText = f.read()
tOReMOVE = [M,™,™ ", ™., "\, T\ T\t T ey iy m e e wn g

theText = theText.lower()

for badChar in toRemove:
theText = theText.replace(badChar,"” ™)
return theText.split()

allwordsList = loadBook("alice.txt™)
print(f"Loaded text with {len(allWordsList)} words")

start = time.time()
1= len(allWordsList)
slicel= 1//4

futuresl = [mostFrequentWordvl.remote(allWordsList[i:i+slicelL]) for i in range(@, 1, slicel)]
initialResults= ray.get(futuresl)
mostCommonInAllNodes= set([t[@] for t in initialResults])

futures2 = [freqWordsCount.remote(mostCommonInAllNodes, allWordsList[i:i+sliceL]) for i in range(®@, 1, slicel)]

finalResults= ray.get(futures2) | |
ans= finalMerge(finalResults) M JEJ_'!JP_'"JI IJ—H ]
end = time.time()

elapsedl = end - start 5gi6 Mell()n UIliVeI‘Sity Qatal'

print("List-based\nAnswer {} in {:0.4f} seconds".format(ans, elapsedl))
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import time
import ray

ray.init()

@ray.remote
class Node(object):

def __init__(self, sublist):
self.wordList= sublist

def mostFrequentWordvl(self):
maxword = None
maxcnt = 8
for word in self.wordlList:
cnt = self.wordList.count(word)
if cnt > maxcnt:
maxcnt = cnt
maxword =word
return (maxword, maxcnt)

def freqWordsCount(self, mostFreqgWords):
d={}
for w in mostFregWords:
d[w]= self.wordList.count(w)
return d

def finalMerge(1)

finalD={}
maxi=""
for d in 1:

for w in d:
finalD[w]= finalD.get(w, ©)+d[w]
if maxW=='' or finalD[w] > finalD[maxW]:
maxh= w

return maxW, finalD[maxW]

def loadBook(filename):
with open(filename,"r
theText = f.read()
toRemove = [ "

, encoding='utf-8') as f:

N N T T a8 e, e

»
theText = theText.lower()

for badChar in toRemove:
theText = theText.replace(badChar,” ")
return theText.split()

allWordsList = loadBook("alice.txt")
print(f"Loaded text with {len(allWordsList)} words")

start = time.time()
1= len(allWordslList)

nodes= []
slicel= 1//4

for i in range(e, 1, slicel)
nodes.append(Node.remote(allWordsList[i:i+slicel]))

futuresl = [nodes[i].mostFrequentWordvl.remote() for i in range(4)]
initialResults= ray.get(futuresl)
mostCommonInAllNodes= set([t[@] for t in initialResults])

futures2 = [nodes[i].fregWordsCount.remote(mostCommonInAllNodes) for i in range(4)]
finalResults= ray.get(futures2)

ans= finalMerge(finalResults)

end = time.time()

elapsedl = end - start

print("List-based\nAnswer {} in {:8.4f} seconds".format(ans, elapsedl))

Most Frequent Word
Solution —

Using Ray Actors
(Python Classes)
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