
Fundamentals of Programming
and Computations

CS 15-112
Advanced Python Topics:
Distributed Computing

Hend Gedawy

April 21, 2024

Outline
• Motivation

• Examples of distributed systems

• Building and running a distributed computing system

• Demo

A Common Theme is Data

3

A Common Theme is Data

4

2 5 6.5 9 12.5 15.5 18
26

33
41

64.2

79

97

120

147

181

0

20

40

60

80

100

120

140

160

180

200

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Ze
tt

ab
yt

es

Year

Data Generated Per Year

53.72%

12.69%

9.86%

5.67%

5.35%

4.54%

3.74% 2.73%
1.39% 0.31%

Proportion of Internet Data Traffic

Video Social Gaming Web Browsing

Messaging Marketplace File Sharing Cloud

VPN Audio

~70% of the world’s data was generated only over the past two years

NOTE: Slide borrowed from 15-440 Distributed Systems course offered by Dr. Mohammed Hammoud

What Do We Do With All This Data

What Do We Do with This Data?

Recognize Patterns and relationships
between data

(App. e.g. predicting and diagnosing diseases)

Classify data into different categories or classes
based on their features

(App. e.g. better environment interaction and
navigation for robots)

Identify anomalies and outliers

(App. e.g. detecting scams/misleading financial
operations)

Determine the importance of different factors
or variables in predicting the target outcome

(App. e.g. Identifying dominant factors for
telecommunication customers churn)

Make predictions about future events based on
past observations

(App. e.g. forecasting energy demand)

Build algorithms and techniques that enable computers to
learn from this data and be able to :

Example: ChatGPT
• AI language model developed by OpenAI
• Created using large-scale datasets

obtained from various sources, including
books, websites, and other texts

• It learned from this data to develop a
wide-ranging understanding of human
language.

• generating human-like text responses to
questions,

• providing information,
• engaging in conversations
• offering assistance on a wide range of topics.

Where To Process All This Data?

Option 1: Hardware Upgrades

• E.g., faster CPU, more memory,
and/or larger disk

• This is What we Call Vertical Scaling

Option 1: Hardware Upgrades

[Source]

Individual computers
still suffer from limited
resources with respect
to the scale of today’s

problems

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Option 2: Adding More Machines
Option 1: Vertical Scaling

(Upgrade an Instance;
RAM, CPU, etc.)

Option 2: Horizontal Scaling
(Add more instances)

Option 2: Adding More Machines

According to unverified
information leaks, GPT-4 was
trained on about 25,000 Nvidia
A100 GPUs for 90–100 days.

 Assuming that the GPUs were
installed in Nvidia HGX servers
which can host 8 GPUs each,
meaning 25,000 / 8 = 3,125
servers were needed.

source

[Source]

https://towardsdatascience.com/the-carbon-footprint-of-gpt-4-d6c676eb21ae#:%7E:text=The%20electricity%20consumption%20of%20GPT%2D4&text=According%20to%20unverified%20information%20leaks,8%20%3D%203%2C125%20servers%20were%20needed.
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Examples of Systems that Leverage
Distributed Computing

How and Where is
Distributed Computing Run

Distributed Computing Process

Internet

1) Job Request

7) Response

2) Split & Schedule
Job

3) Task 2

6) Integrate
Partial Results

?

?

?

(Workers/Slaves)

(Master/ Controller)

4) Process/
Compute

4) Process/
Compute

4) Process/
Compute

Where is Computing Distributed Hosted
Different Paradigms

Cloud Computing (Data Centers)

Edge Computing (Edge Servers) FemtoClouds, Mobile Device Clouds, or IoT Clouds
(Mobile & IoT Devices)

What It Takes To Build A
Distributed Computing System

Distributed Computing System
Requirements

• A way to express the problem in terms of parallel processes and execute them on
different machines (Programming and Concurrency Models)

• A way to organize processes (Architectures)

• A way for distributed processes to exchange information (Communication
Paradigms)

• A way to locate and share resources (Naming Protocols)

NOTE: Slide borrowed from 15-440 Distributed Systems course offered by Dr. Mohammed Hammoud

Distributed Computing Sytems
Requirements

• A way for distributed processes to cooperate, synchronize with one another, and
agree on shared values (Synchronization)

• A way to reduce latency, enhance reliability, and improve performance (Caching,
Replication, and Consistency)

• A way to enhance load scalability, reduce diversity across heterogeneous systems,
and provide a high degree of portability and flexibility (Virtualization)

• A way to recover from partial failures (Fault Tolerance)

NOTE: Slide borrowed from 15-440 Distributed Systems course offered by Dr. Mohammed Hammoud

Distributed Systems: Two Options
We can create a custom distributed system (or program) for each

new algorithm
 Cumbersome!

Or utilize modern distributed frameworks, which:
 Relieve programmers from worrying about the many difficult aspects of

distributed systems
 Allow programmers to focus on ONLY the sequential parts of their

programs

 E.g., MapReduce (or Hadoop), GraphLab (Turi later), and Ray

NOTE: Slide borrowed from 15-440 Distributed Systems course offered by Dr. Mohammed Hammoud

Framework

www.ray.io

https://www.ray.io/

Companies Using Ray - Examples

Python - Ray
Ray API allows serial applications to be

parallelized without major modifications.

Function Task

Class Actor

Object Immutable
Object

Ray takes the existing concepts of functions and classes and
translates them to the distributed setting as tasks and actors.

Ray Cluster: Master-Slave Architecture

• Make sure ray is stopped in all nodes (sudo ray stop --force)

• Start Ray @ Head Node:

• sudo ray start --head --include-dashboard 1 --dashboard-host 0.0.0.0

• Include more worker machines:

• ssh to the worker node and start ray using the following command:

• sudo ray start --address=‘headNodeIP:headPortNum’

• Run the program @Head Node:

• sudo python3 <Program python file> <Program Parameters>

• To view the dashboard of your cluster, go to your web browser and put
headNodeIP:dashboardPortNumber

• When Done, run (sudo ray stop --force) on all nodes

Setting Up & Running A Program on Ray
Cluster

Given when head started

Our Ray Cluster – Setup

Distributed System

(1) (n)

....

Ray Cluster

Ray Dashboard

Sequential to Parallel in RaySequential to Parallel in Ray

Sequential to Parallel in Ray

F(0)F(1)F(2)F(3)

F(0)

F(1)

F(2)

F(3)

Sequential to Parallel in RaySequential to Parallel in Ray

4 copies of f are executed in parallel (on different machines).

The function call returns immediately a reference to the eventual output

The actual function execution (i.e. Task) is taking place in the
background

It is called a future, because we don’t get the
output immediately, we get a promise that we

will get the output at some point

Remote function: can be executed remotely and
asynchronously

Application – Most Frequent Word
(Sequential Implementation)

Application – Most Frequent Word
(How to Parallelize)

List of all words
in the

document (l)

(Most Frequent
Word, its Count)

mostFrequentWord(l)

[1,1,2,3,4,1,2,2,3,4,1,2,3,3,4,1,2,3,4,1] (1,6)

Application – Most Frequent Word
(How to Parallelize)

List of all words
in the

document

(Most Frequent
Word, its Count)

?

?

?

?

Application – Most Frequent Word
(How to Parallelize)

List of all words
in the

document

mostFrequentWord(subList1)

mostFrequentWord(subList2)

mostFrequentWord(subList3)

mostFrequentWord(subList4)

[1,1,2,3,4,1,2,2,3,4,1,2,3,3,4,1,2,3,4,1]

[1,1,2,3,4]

[1,2,2,3,4]

[1,2,3,3,4]

[1,2,3,4,1]

Application – Most Frequent Word

List of all words
in the

document

[1,1,2,3,4,1,2,2,3,4,1,2,3,3,4,1,2,3,4,1]

(1,2) Each Node Returned the
most Common Word and its
count in the assigned sublist

Now we need to know the
count of each of these most

common words [1,2,3] in
the sublist assigned to each
node (Another Distributed

Computing Round)

Application – Most Frequent Word
(Another Distributed Round)

List of all words
in the

document

freqWordsCount(subList1)

freqWordsCount(subList2)

freqWordsCount(subList3)

freqWordsCount(subList4)

[1,1,2,3,4,1,2,2,3,4,1,2,3,3,4,1,2,3,4,1]

[1,1,2,3,4]

[1,2,2,3,4]

[1,2,3,3,4]

[1,2,3,4,1]

Each node again
receives the sublist of
words and a list of the
most common words

[1,2,3]

Each Node Counts the
number of occurrences

of each of the
common words

[1,2,3]

[1,2,3]

[1,2,3]

[1,2,3]

Application – Most Frequent Word
(Aggregating Results)

List of all words
in the

document

[1,1,2,3,4,1,2,2,3,4,1,2,3,3,4,1,2,3,4,1]

{1:2, 2:1, 3:1}
The master integrates the

results by summing the
counts of each word and

return the most common one

(Most Frequent
Word, its Count)

(1,6)

Most Frequent Word
Solution –
 Using Ray Tasks
(Python Functions)

Most Frequent Word
Solution –
Using Ray Actors
(Python Classes)

	Fundamentals of Programming and Computations�CS 15-112�Advanced Python Topics: Distributed Computing
	Outline
	A Common Theme is Data
	A Common Theme is Data
	What Do We Do With All This Data
	What Do We Do with This Data?
	Example: ChatGPT
	Where To Process All This Data?
	Option 1: Hardware Upgrades
	Option 1: Hardware Upgrades
	Option 2: Adding More Machines
	Option 2: Adding More Machines
	Examples of Systems that Leverage Distributed Computing
	How and Where is Distributed Computing Run
	Distributed Computing Process
	Where is Computing Distributed Hosted�Different Paradigms
	What It Takes To Build A Distributed Computing System
	Distributed Computing System Requirements
	Distributed Computing Sytems Requirements
	Distributed Systems: Two Options
	Framework
	Companies Using Ray - Examples
	Python - Ray
	Slide Number 24
	Ray Cluster: Master-Slave Architecture
	Setting Up & Running A Program on Ray Cluster
	Our Ray Cluster – Setup
	Ray Dashboard
	Sequential to Parallel in Ray
	Sequential to Parallel in Ray
	Sequential to Parallel in Ray
	Application – Most Frequent Word�(Sequential Implementation)
	Application – Most Frequent Word (How to Parallelize)
	Application – Most Frequent Word�(How to Parallelize)
	Application – Most Frequent Word�(How to Parallelize)
	Application – Most Frequent Word
	Application – Most Frequent Word�(Another Distributed Round)
	Application – Most Frequent Word�(Aggregating Results)
	Most Frequent Word Solution –� Using Ray Tasks (Python Functions)
	Most Frequent Word Solution – �Using Ray Actors (Python Classes)

