Name: Andrew Id:

15-112 Spring 2024 Quiz 8
Up to 25 minutes. No calculators, no notes, no books, no computers. Show your work!
Do not use try/except or recursion on this quiz.

1. (6 points) Code Tracing: Indicate what the following program prints. Place your answers (and nothing
else) in the box next to the code.

def CT(L):
s = set(L)
d = dict()

for value in s:
d[value[0] .upper()] = d.get(valuel[O].upper(), [1) + [value]

return d
L = ["Amna", IlReemll’ uyomnan’ "reem", "Yaman", llayall’ "Reem"]
d = CT(L)

for e in d:

print(f"{len(d[e])} {e}s : {d[el}™)

2. Big O:

In this problem you will be calculating the efficiency of a provided piece of code. Consider the following
example:

def bigOSample(n): # N is n
print ("Simple") # 1 step
for i in range(n): # 1 step for range and loop runs N times
print (i) # 1 step
1 step: Update i at end of loop

Total Steps Count: 2 + 2N
BigQ Time Efficiency: O(N)

(a) (4 points) Write line-by-line step count (In the comment space next to each line).
def bigO(L): # L is an NxN list

length = len(L) #

for i in range(0, length, length//4): #

L[i].sort() #

sortedRow = L[i] #

s = set(sortedRow) #

if len(sortedRow) == len(s): #

print ("A unique Row") #

else: #

print("Row is not unique") #

L[i] = list(s) #

return s #

(b) (0.5 points) Write the total number of steps.

Total Steps Count =

(¢) (1.5 points) Write the simplified BigO complexity (i.e. not including lower order terms or coefficients).

BigO Time Efficiency =

Page 2

3. (8 points) Free Response: Fortunate Tuples
A fortunate tuple (coined term) is a tuple that has a frequency in the list equal to its length.
Write function fortunateTuples(L) which takes a list (L) of tuples and returns a set containing all the
fortunate tuples in the list. Your solution should run in O(N) time.

Consider the following example:

assert (fortunateTuples ([(1, 2), (3, 4), (1, 2), (5,), (3, 4, 5)1)=={U, 2), (GO}
assert(fortunateTuples([("A", "B"), ("C", "D")] == set())
assert (fortunateTuples([]) == set())

Page 3

