
License Plate Number Detection Algorithm for Qatari
License Plates

Hermione Granger
Hogwarts School of W and W

Scotland, UK

Rancho Chanchad
Imperial College of Engineering

Pune, India

Saquib Razak
Carnegie Mellon University

Doha, Qatar

ABSTRACT
As traffic accidents increase due to over speeding and other traffic
violations, it becomes important for law enforcement agencies to
find technological solutions to detect these violations. In Qatar,
the government has placed high resolution cameras on various
roads and highways that detect speeding motorists and take a
picture of their vehicles. These images are then processed to
detect the license plate numbers and issue tickets accordingly.
This paper describes an algorithm to extract and determine digits
from a Qatari license plate.

Categories and Subject Descriptors
I.4.6 [IMAGE PROCESSING AND COMPUTER VISION]:
Edge and feature detection.

General Terms
Image Processing, Optical Character Recognition,

Keywords
License Plate, Qatar, Arabic Numerals.

1. INTRODUCTION
The issue of traffic accidents is becoming an ever increasing
phenomenon especially in rapidly developing countries. Several
different approaches have been adapted by governments of these
nations to bring traffic violations under control. These approaches
include better awareness among drivers, better driving education,
and strict penalties for traffic violations. In Qatar, the local
administrators have installed traffic cameras and sensors around
major roadways and highways. These sensors are triggered by cars
that are going over the speed limit or breaking through a red
signal. The cameras then take a picture of the license plate of the
offending car. The image of the license plate is then processed
through a software that determines the number on the license
plate. This number is then searched through the database of all
registered vehicles and appropriate people are levied with fines.
One of the most important parts of this system is the software that
detects license plates and determines the plate number. In this
paper we will present one such algorithm that takes as input the
image of a license plate and outputs the license plate number.

2. Qatari License Plates
There are two main kinds of license plate designs that are used on
private vehicles in Qatar. Figure 1 and 2 shows these two designs.

Figure 1: License Plate Type 1

Figure 2: License Plate Type 2

In this paper we will concentrate on Type 1 license plates only.

3. Image Processing
There are five primary steps that are required for extracting
characters from a license plate, the following sections describe
each phase.

3.1 Plate localization
This step involves finding and isolating the plate on the picture.
When the traffic cameras take picture of a moving vehicle, often
the license plate is embedded as part of the image. The part of
image that contains the license plate needs to be extracted and
isolated in order to avoid unnecessary noise in the image being
processed. For the purpose of this paper, we will assume that all
the images being processed have already gone through this phase
and we have access to extracted license plate images.

3.2 Plate orientation and sizing
This phase compensates for the skew of the plate and adjusts the
dimensions to the required size. Again we assume that the images
we use have gone through this phase.

3.3 Normalization
This step involves adjusting the brightness and contrast of the
image. We will discuss algorithm to perform this step in detail in
section 4.1

3.4 Character segmentation
This phase finds the individual characters on the plates. Once the
characters have been segmented, we can go through individual
characters to determine their value.

http://en.wikipedia.org/wiki/Skew

3.5 Optical character recognition
This phase takes a single character and determines its value. We
use feature extraction and then statistical techniques for this step
as mentioned in section 4.3. Figure 3 shows a pictorial view of the
first 4 steps.

Figure 3: First four steps of License plate character

recognition

4. Algorithm
In this section, we will present the algorithm that we developed to
detect numbers on a Qatari license plate. As mentioned earlier, we
assume that license plate images have been extracted from the
images of the vehicles and have the correct orientation and some
level of consistency in size. We also assume that the image has
minimum amount of noise. Removing noise from images is a well
studied topic and is out of the scope of this paper.

4.1 Normalization Algorithm
In this section, we will present our technique for adjusting the
brightness and contrast of a given image. We assume that the

image is loaded as an uncompressed bitmap file, where we have
access to each pixel of the picture as an RGB coded color value.
The RGB color model is an additive color model in which red,
green, and blue light are added together in various ways to
reproduce a broad array of colors. The name of the model comes
from the initials of the three additive primary colors, red, green,
and blue[2]. The rows of pixels represent the height of the image
and columns represent the width. Figure 4 shows an image that
would be a good candidate for input to our algorithm.

Figure 4: A sample input image for our algorithm

We start normalizing by converting each pixel to a gray scale
color. A grayscale digital image is an image in which the value of
each pixel is a single sample, that is, it carries only intensity
information. Images of this sort, also known as black-and-white,
are composed exclusively of shades of gray, varying from black at
the weakest intensity to white at the strongest[1]. This is done by
going through each pixel of the image and then determining the
average brightness of the original color of the pixel by averaging
its red, green, and blue parts. This will tell us what shade of gray
to use. For example, if the original color is (20, 0, 100), then its
average brightness is 40 ((20 + 0 + 100) /3), so we'll replace that
color with (40, 40, 40), which will appear as a very dark gray.
Applying this technique to Figure 4 will give us the following
image. As you can see, all colors have been converted to various
shades of gray.

Figure 5: Image after converting to grayscale

Conversion to grayscale is an intermediate step as we eventually
want to convert the image into a black and white image. This
helps us reduce the amount of information that we have to
process. So the next step is to convert this gray scale image to
black and white image. We take each pixel of the image and if the
proportion of all three values: R, G and B is less than 100, we set
the colors to 0 otherwise we set each component to 255. Notice
that if R, G and B values are 0, we get the color black, and if all
values are 255, we make the white color. So in essence, all values
that are below 100 are converted to black color and all other
values are changed to white. Applying this on our example image
will produce the image as shown in Figure 6.

Localization

Orientation
and
Sizing

Normalization

Character
Segmentation

Figure 5: Image after converting to black and white

4.2 Character Segmentation
This step involves separating out the characters, so that each
character can then be processed for identification. Assuming, that
our input for this step is a black and white image, we use the
following steps for character segmentation.

4.2.1 Removing Border
The first step is to remove the border from the image. This allows
us to reduce the amount of information that we will have to
process. To remove the border, we start from the left side of the
image. We observe that the left border is made up of contiguous
black pixels and the first white pixel indicates the end of the
border. This is a trivial observation but nonetheless important for
our purposes. We take the image and start at the left most part of
each row. Start by looking for the first black pixel. The top left
part of Figure 5 is zoomed in and shown in Figure 6.

Figure 6. Top Left corner of Figure 5.

We iterate horizontally through each column of this row and wait
for the first black pixel. When we see the first black pixel, we set
its value to white and after that every black pixel is changed to
white until a white pixel is encountered. This white pixel would
indicate the end of border. This process will produce the image as
shown in Figure 7.

Figure 7. Image after removing partial boundary.

Notice that we still have the border on the right side leftover. This
is because in the previous step, we started looking at the black
pixel from left corner which ignored those black pixels that are on
the right side. To remove this bit of pattern, we use a similar
technique but start from the right side. So start looking at the
pixels from the right most edge of the image and iterated

backwards. The first contiguous set of black pixels should be
converted to white resulting in the image shown in Figure 8.

Figure 7: Image of the license plate with borders removed

4.2.2 Horizontal Segmentation
Horizontal segmentation is the first main phase of locating the
numerical characters (the Arabic characters) on the license plate
after all the surrounding noise has been reduced. First we will try
to detect the starting row and ending row of the digits and hence
the name horizontal segmentation. This involves writing an
algorithm that will determine the location of imaginary lines
“start” and “end” as shown in red in Figure 8.

Figure 8: Locating the start and end rows of the digits

This task is accomplished by treating any series of horizontal lines
that have any black pixel as one “blob”. So looking at Figure 7, if
we start at the top of the image, there are a few lines that are all
white. Then there is some text which is made up of a group of
lines where each line has some black in it. This is followed by
another small group of white lines and then some text and then a
few empty rows and then some text. So in all we have three blobs
on the image. If there is some noise in the image, then we might
get more than three blobs as shown in Figure 9. The image in this
figure will result in 5 blobs. One extra blob because of thin line at
the top and one because of the line at the bottom.

Figure 9: License plate with some noisy data

Our goal is to find the biggest blob. The following algorithm
outlines our methodology for finding the biggest horizontal blob.

Figure 10: Algorithm for horizontal segmentation

4.2.3 Vertical segmentation
Once we have the numerical segment located, we will do the rest
of the work with only this segment. Our task now is to figure out
the location (start and end) of each of the digits in this vertical
blob.
For vertical segmentation, we start from the left most column of
the image and step through each column. For each column we
analyze each pixel in this column. In the beginning we will find
that all pixels are white. As soon as we hit the first digit, the color
will change to black. The first time we collect a black pixel we
mark it the start of the digit and then keep on searching until we
see a column that is all white. This would mark the end of this
digit. We repeat this step six times, each time starting from the
end of the last digit in order to search for the next digit. In order
to avoid detecting small specs as digits, we make sure that our
digits have a minimum width. For our cases a minimum width of
5 works best. This helps us avoid detecting the small circles
towards the left and right of digits as shown in Figure 11.

Figure 11: License plate with some noisy data

4.2.4 Character Recognition
Now that we have isolated each digit, recognizing each digit is a
simple feature extraction and statistical analysis. Feature
extraction is just a fancy name for a simple process described
below. Lets take one digit as an example as shown in Figure 13a
which represents the number “3”. We take each digit and divide it
in four quadrants as shown in Figure 13b.

Figure 13a: Shows the digit 3 Figure 13b: Four quadrants

Now we calculate the percentage of black pixels in each quadrant
of the digit. Percentage of black is taken by counting all black
pixels in a quadrant and dividing it by the total number of pixels
in the quadrant. We do this step for each of the four quadrants.
Once we have these values for each quadrant, we compare with
the measured value for each digit as shown in table 1. The values
that match most closely is our prediction for this digit.
We use statistical analysis for pixel matching. This is again a
fancy word for the following algorithm. Table 1 shows measured
values for percentage of black pixels in each quadrant of each
digit. For example, the fourth row in the table shows the
percentages for digit 3. As can be seen from Figure 13b and Table
1, there is a high number of black pixels in Quadrant 1, and the
corresponding percentage is 47% in the table. Quadrant 4, has no
black pixels and the corresponding percentage in Table 1 is also
0%. Also notice that several quadrants have very similar
percentages for different digits.
For example, in Quadrant 1, the percentage of digit 0 and 8 are
very similar. Hence we have to use the knowledge of all four
quadrants to determine the digits. We use the following statistical
method: Let’s say we have a digit that we are trying to decode.
We take this digit’s Q1 value, and subtract it from Q1 value for
each digit. This shows us how close the two values are. If the
difference is small, then the value are similar otherwise they are
different. We divide this difference by 4 since we have four
quadrants. We repeat this step for all four quadrants and add the
results for each digit. The digit with the minimum overall
difference most closely matches the sample digits and is our
estimation for this digit. Lets say that for a given digit, our values
for Q1, Q2, Q3, and Q4 are 0.12, 0.58, 0.72, 0.34.

#initialize variables

inBlob  False

startOfBlob  0

maxBlob  0

result  Empty List

blobstart  0

Loop through all rows of the image

 CurrentColor  WHITE

 For this row, go through each column and check if there
are any black pixels in this row

 If black pixels found and inBlob is False

 # This is start of a blob

 Set isBlob to True

 # save the start of blob

 Set startOfBlob to current row

If no black pixels and inBlob is True

 Set inBlob to False

 Find size of the blob we just finished

 If size is bigger than biggest blob we have seen

 result = [startOfBlob,current row]

 maxBlob = size of this blob

End Loop

Small dot
showing the
presence of the
screw on license
plate

Small dot
showing the
presence of the
screw on
license plate

Figure 12: Pseudocode for Vertical Segmentation
Then for Digit 0, the absolute difference between corresponding
quadrants is 0.09, 0.27, 0.45, 0.08, with a total difference equal to
0.09/4 + 0.27/4 + 0.45/4 + 0.08/4 = 0.21. Similarly, for Digit 4
we get values 0.02, 0.00, 0.00, 0.02 with an overall difference of

0.01. When we get these overall difference values for all 10 digits,
we can search for the smallest different and that is our estimate for
this particular digit.

Digit Q1 Q2 Q3 Q4

0 0.21 0.31 0.27 0.26

1 0.16 0.58 0.12 0.54

2 0.38 0.80 0.33 0.23

3 0.47 0.58 0.34 0.00

4 0.10 0.58 0.72 0.32

5 0.52 0.37 0.59 0.51

6 0.45 0.44 0.04 0.43

7 0.33 0.37 0.25 0.25

8 0.22 0.26 0.40 0.36

9 0.52 0.80 0.22 0.55

Table1: A measure percentage of black pixel percentage for
each quadrant of each digit

5. Future Work
In this paper, we have presented a technique for determining
digits from a Qatari License plate that is rectangular. Our next
goal is to develop an algorithm that is capable of handling both
types of license plates that are used in Qatar. We also want to
study the effect of having noisy data where the images of license
plates are blurry and measure the effectiveness of our algorithm.

6. REFERENCES
[1] Stephen Johnson (2006). Stephen Johnson on Digital

Photography. O'Reilly. ISBN 059652370X.
[2] Wikipedia – RGB Color Model.

http://en.wikipedia.org/wiki/RGB_color_model
[3] Ding, W. and Marchionini, G. 1997. A Study on Video

Browsing Strategies. Technical Report. University of
Maryland at College Park.

[4] Fröhlich, B. and Plate, J. 2000. The cubic mouse: a new
device for three-dimensional input. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (The Hague, The Netherlands, April 01 - 06, 2000).
CHI '00. ACM, New York, NY, 526-531. DOI=
http://doi.acm.org/10.1145/332040.332491.

[5] Tavel, P. 2007. Modeling and Simulation Design. AK Peters
Ltd., Natick, MA.

[6] Sannella, M. J. 1994. Constraint Satisfaction and Debugging
for Interactive User Interfaces. Doctoral Thesis. UMI Order
Number: UMI Order No. GAX95-09398., University of
Washington.

[7] Forman, G. 2003. An extensive empirical study of feature
selection metrics for text classification. J. Mach. Learn. Res.
3 (Mar. 2003), 1289-1305.

[8] Brown, L. D., Hua, H., and Gao, C. 2003. A widget
framework for augmented interaction in SCAPE. In

// initialize variables

// two variables digitstartn and digitendn for each digit

digitstart  0

digitend  0

start  input parameter

blobstart  0

CurrentColor  WHITE

PrevColor  WHITE

// go through the current column,

Loop j from start to TotalColumns

 // we assume that there are no black pixels in this

 // column.

 CurrentColor  WHITE

 // step through each row of this column

 // check if there are any black pixels

 // notice that we should only check

 // between the start and end locations of

 // the biggest blob we found in previous

 // step

 Loop r from maxblobstart to maxblobend

 if Color in row r, column j is BLACK

 CurrentColor  BLACK

 end Loop

 // now if the current color is white then in

 // this column there were no BLACK pixels

 if CurrentColor is not Equal to PrevColor

 if CurrentColor is BLACK

 blobstart  j

 else

 // if color is white then

 // prev color is black

 // so we just finished

 // a digit. Check if the size

 // of the digit is big enuf

 if j – blobStart > 5

 digitstart(i) = blobstart

 digitstop = j-1

 start = j + 1

 // break from loop

 j  TotalColumns

 end Loop j

End Loop i

http://en.wikipedia.org/wiki/Grayscale#cite_ref-0
http://doi.acm.org/10.1145/332040.332491

Proceedings of the 16th Annual ACM Symposium on User
Interface Software and Technology (Vancouver, Canada,
November 02 - 05, 2003). UIST '03. ACM, New York, NY,
1-10. DOI= http://doi.acm.org/10.1145/964696.964697.

[9] Yu, Y. T. and Lau, M. F. 2006. A comparison of MC/DC,
MUMCUT and several other coverage criteria for logical
decisions. J. Syst. Softw. 79, 5 (May. 2006), 577-590. DOI=

http://dx.doi.org/10.1016/j.jss.2005.05.030.

[10] Spector, A. Z. 1989. Achieving application requirements. In
Distributed Systems, S. Mullender, Ed. ACM Press Frontier
Series. ACM, New York, NY, 19-33. DOI=
http://doi.acm.org/10.1145/90417.90738.

http://doi.acm.org/10.1145/964696.964697
http://dx.doi.org/10.1016/j.jss.2005.05.030
http://doi.acm.org/10.1145/90417.90738

	1. INTRODUCTION
	2. Qatari License Plates
	3. Image Processing
	3.1 Plate localization
	3.2 Plate orientation and sizing
	3.3 Normalization
	3.4 Character segmentation
	3.5 Optical character recognition

	4. Algorithm
	4.1 Normalization Algorithm
	4.2 Character Segmentation
	4.2.1 Removing Border
	4.2.2 Horizontal Segmentation
	4.2.3 Vertical segmentation
	4.2.4 Character Recognition

	5. Future Work
	6. REFERENCES

