
fullName:__________________________________________________


andrewID:__________________________________________________


recitationLetter:___________


15-112 F22

Quiz4 version B
You MUST stop writing and hand in this entire quiz when instructed in lecture.

You may not unstaple any pages.
Failure to hand in an intact quiz will be considered cheating. Discussing the quiz with
anyone in any way, even briefly, is cheating. (You may discuss it only once the quiz
has
been posted to the course website.)
You may not use your own scrap paper. If you must use additional scrap paper, raise
your hand and we will provide some. You must hand any scrap paper in with your
paper quiz, and we will not grade it.
You may not ask questions during the quiz, except for English-language clarifications.
If you are unsure how to interpret a problem, take your best guess.
You may not use any concepts (including builtin functions) we have not covered in the
notes this semester.
You may not use dictionaries, sets, or recursion.
We may test your code using additional test cases. Do not hardcode.
Assume almostEqual(x, y) and roundHalfUp(n) are both supplied for you. You must
write all other helper functions you wish to use.
Write your answers entirely inside the boxes!

Note: There are three required problems in the following order: FR1, FR2, and
CT1. Don't forget CT1!

 



 

Free Response 1: destructive rotateListRight(L, n) [45 points]
Write the function rotateListRight(L, n) which takes a list L and an integer n, and
destructively modifies the list so that each element is shifted to the right by n indices
(including wraparound). As usual for destructive functions, this function should always
return None.
Examine the test cases carefully!

Note: If you do not know how to write this destructively, you may write it nondestructively
instead for half-credit. A nondestructive function must return a new (properly rotated) list
and must not mutate L.

def testRotateListRight():

    L = ['a','b','c','d']

    rotateListRight(L, 1)

    assert(L == ['d','a','b','c'])

    rotateListRight(L, 0)

    assert(L == ['d','a','b','c'])

    rotateListRight(L, -3)

    assert(L == ['c','d','a','b'])


    L = ['a', 42, True, None, 4.2]

    rotateListRight(L, 3)

    assert(L == [True, None, 4.2, 'a', 42])

    rotateListRight(L, 10)

    assert(L == [True, None, 4.2, 'a', 42])


    L = []

    rotateListRight(L, 10)

    assert(L == [])

testRotateListRight()

Begin your answer on the next page
 



 

Begin your FR1 answer here

 



 

Free Response 2: nondestructive isSinglePath(L) [40 points]
Assume L is a list of non-negative integers. If each integer in the list represents the next
index to be visited in the list, a "single-path" list visits each index once before returning to
the starting index.

The following list L is an example of a single-path list:
L = [3, 2, 0, 4, 1]

We can see this by starting at index 0:
L[0] == 3    # Visit L[3] next

L[3] == 4    # Visit L[4] next

L[4] == 1    # Visit L[1] next

L[1] == 2    # Visit L[2] next

L[2] == 0    # Visit L[0] next

This brings us back to where we started. Each index has been visited.

The following list L is NOT a single-path:
L = [1, 0, 3, 2]

Starting again at index 0:
L[0] == 1    # Visit L[1] next

L[1] == 0    # Visit L[0] next

This brings us back to where we started, BUT L[2] was never visited.


The list [5, 0, 2] is NOT a single-path because L[0]==5, which is out of range.


Write the nondestructive function isSinglePath(L) that takes a non-empty
list L (guaranteed
to contain only non-negative integers) which returns
True if L is a single-path list, and False
otherwise. Remember, this function must be nondestructive! Here are some
example test
cases:

def testIsSinglePath():

    assert(isSinglePath([0]) == True)

    assert(isSinglePath([1, 0]) == True)

    assert(isSinglePath([1, 2, 3, 4, 0]) == True)

    assert(isSinglePath([3, 2, 0, 4, 1]) == True)

    assert(isSinglePath([5, 0, 1, 2, 3, 4]) == True)

    assert(isSinglePath([5]) == False)

    assert(isSinglePath([1, 1, 2]) == False)

    assert(isSinglePath([1, 2, 3, 4]) == False)

testIsSinglePath()



Begin your FR2 answer here

 



 

You may continue your FR2 answer here

 



 

CT1: Code Tracing [15pts]
Indicate what the following code prints. Place your answers (and nothing else) in the box
below.

import copy

def ct1(x):

    y = x

    z = copy.copy(x)

    x.append(12)

    y[0] += 3

    x = x[2:]

    print(f'x = {x}')

    x[-1] = x[1] + x[0]

    z.pop(0)

    return x[-1], y[-1], z[-1]


L = [42, 30, 100]

print(f'ct = {ct1(L)}')
print(f'L = {L}')


 



 

bonusCT: Code Tracing [2pts bonus]
This question is optional. Indicate what the following code prints. Place your answers (and
nothing else) in the box below.

def bonusCt1(L):

    return sum([int(d) for d in

                str([str(c*2)*2 for c in L*2]) 

                if d.isdigit()])

print(bonusCt1([4,5,6])) 



