
www.cs.cmu.edu/~112/gallery.html

http://www.cs.cmu.edu/~112/gallery.html

As you walk in

Play with this demo of a neural network that classifies
handwritten digits:

https://adamharley.com/nn_vis/mlp/3d.html

https://adamharley.com/nn_vis/mlp/3d.html

15-112
Lecture 2

Week 1 Thu
Getting Started

Instructor: Pat Virtue

Walk-through:
Three-neuron neural network

Note: a quick example of real-world functions that we can
start to write already!

Design example: Three-neuron neural network
Note:

The following slides were adjusted to match what we ended up
covering in lecture.

See the Appendix at the end of these slides for a few more steps to
complete the three-neuron network code

Design example: Three-neuron neural network
High-level design of a small neural network

𝑥

𝑎𝐵

𝑎𝐴

𝑦

A

𝑎𝐴: ______

𝑎𝐵: ______

Neuron

Neuron

Neuron (2D)
B

C

Network

Input 𝑥: ______

Output 𝑦: ______

Temporary, intermediate values:

Design example: Neural Network Components
Handout

𝑧 ReLULinear

Neuron

𝑥 𝑦
Linear
𝑚𝑥 + 𝑏

Parameters
𝑚: slope
𝑏: intercept

𝑥

𝑧 𝑎
ReLU

max(0, 𝑧)

𝑎

Example: Three-neuron neural network
Code – first pass: moving top-down
def network(x):

Return y, the output of the network

pass # for now

def neuron(x, m, b):

Return a, the output of one neuron

pass # for now

def linear(x, m, b):

print(f'Inside linear({m}, {x}, {b}')

return m*x + b

Neuron

TODO later

𝑥 𝑦
Linear
𝑚𝑥 + 𝑏

𝑥 𝑎

Network

TODO later𝑥 𝑦

Example: Three-neuron neural network
Code – move back up to implement neuron
def network(x):

Return y, the output of the network

pass # for now

def neuron(x, m, b):

z = linear(x, m, b)

a = relu(z)

return a

def linear(x, m, b):

return m*x + b

def relu(z):

return max(0, z)

𝑧 ReLULinear

Neuron

𝑥 𝑦
Linear
𝑚𝑥 + 𝑏

𝑥

𝑧 𝑎
ReLU

max(0, 𝑧)

𝑎

Network

TODO later𝑥 𝑦

Walk-through: Three-neuron neural network
Concepts highlighted

▪ Defining functions

▪ Calling functions

▪ Print vs return

▪ None type

▪ Helper functions

▪ Variable scope

▪ if-else statement

▪ Built-in functions (print, max)

▪ Function composition

▪ Top-down design (brief introduction)

https://www.cs.cmu.edu/~112/notes/notes-variables-and-functions.html#Functions
https://www.cs.cmu.edu/~112/notes/notes-variables-and-functions.html#Functions
https://www.cs.cmu.edu/~112/notes/notes-variables-and-functions.html#PrintVersusReturn
https://www.cs.cmu.edu/~112/notes/notes-variables-and-functions.html#ReturnStatements
https/www.cs.cmu.edu/~112/notes/notes-variables-and-functions.html#HelperFunctions
https://www.cs.cmu.edu/~112/notes/notes-variables-and-functions.html#VariableScope
https://www.cs.cmu.edu/~112/notes/notes-conditionals.html#IfElse
https://www.cs.cmu.edu/~112/notes/notes-variables-and-functions.html#BuiltinFunctions
https://www.cs.cmu.edu/~112/notes/notes-variables-and-functions.html#FunctionComposition

Announcements
Assignments:

112 student contract

▪ Due already

Week 2 Pre-reading Checkpoint

▪ Due Fri 9/2, 8 pm

HW1

▪ Due Saturday 9/3, 8 pm

Announcements
Recitation

Friday

▪ Time reserved to work on Pre-reading and associated Checkpoint

▪ (Fix-it Fridays, but not in week 1)

▪ GHC 5th Floor Clusters

Operators and Order of Operations

Order of operations

PEMDAS

https://www.youtube.com/watch?v=ZzeDWFhYv3E

https://www.youtube.com/watch?v=ZzeDWFhYv3E

Poll 4 (unused)

What does this print?

print(2**3**2)

A) 7

B) 64

C) 512

D) Error

Debugging tip!

Expressions are things in Python that evaluate
to a value

1) Save expressions (of all sizes) to variables
2) Use print(expr) to confirm values and

order of operations

Poll 5

How many expressions are there in:

a % b == a - a // b * b

A) 4

B) 5

C) 6

D) 11

E) 21

F) Other

G) I have no idea

Operators
Arithmetic

▪ +, -, *, /, //, **, %, - (unary), + (unary)

Relational

▪ <, <=, >=, >, ==, !=

Assignment

▪ +=, -=, *=, /=, //=, **=, %=

Logical

▪ and, or, not

Note: not covering the bitwise operators (for now at least)

<<, >>, &, |, ^, ~, &=, |=, ^=, <<=, >>=

Strings and Comments

Poll 6 (unused)

Which one does the right thing?

A) print("Have you read "Pride and Prejudice" by Jane Austen?")

B) print("Have you read 'Pride and Prejudice' by Jane Austen?")

C) print('Have you read 'Pride and Prejudice" by Jane Austen?')

D) print('Have you read "Pride and Prejudice" by Jane Austen?')

Poll 6 (unused)

Which one does the right thing?

A) print("Have you read "Pride and Prejudice" by Jane Austen?")

B) print("Have you read 'Pride and Prejudice' by Jane Austen?")

C) print('Have you read 'Pride and Prejudice" by Jane Austen?')

D) print('Have you read "Pride and Prejudice" by Jane Austen?’)

print("Have you read "Pride and Prejudice" by Jane Austen?")

print("Have you read 'Pride and Prejudice' by Jane Austen?")

print('Have you read 'Pride and Prejudice" by Jane Austen?')

print('Have you read "Pride and Prejudice" by Jane Austen?')

Comments

Notes for humans (really important!)

Comments can go on their own line

i = 0 # Comments can go at the end of a line

def squared(x):

""" This is technically a multiline string

but is often used as a comment

"""

return x**2

Strings

Single or double quote are fine

▪ Can be useful for quotes withing strings (but alternated correctly)

▪ Escape characters are needed sometimes

print('Have you read Jane Austen\'s "Pride and Prejudice" recently?')

▪ There are also triple quotes for multiline strings (actually, often used for
comments)

f-Strings

▪ Really useful to print a combination of strings and expressions
x = 42

y = 99

print(f'Did you know that {x} + {y} is {x+y}?')

Errors

Prev Poll 3

What college are you in?

A) Letss eat Grandma

B) Letss eat, Grandma

C) Lets eat Grandma

D) Lets eat, Grandma

E) Let’s eat Grandma

F) Let’s eat, Grandma

Lessons learned

▪ Sensitive to small things

▪ Like spelling, grammar, usage

▪ Different kinds of error

▪ Different from language to language

▪ Be patient while you learn

▪ With yourselves

▪ With each other

▪ Commas save lives

▪ Don’t consume your relatives

Errors

Syntax error
print("100") # Never prints

1 ? 0

print("200") # Never prints

Runtime error
print("100") # Prints!

1 / 0

print("200") # Never prints

Logical error
print(f"100:, {x}") # Prints!

if x % 2 == 1:

print(f"{x} is even") # Prints?

print("200") # Prints!

Debugging tip!

▪ Use print functions to help
learn where runtime errors
are happening

Debugging tip!

▪ Use print functions to see if
branches of code are being
entered

Poll 7 (unused)

What happens when we run the following line?

x = 3(2+7)

A) x takes on the value 27

B) Syntax error

C) Runtime error

D) Logical error

E) I have no idea

Errors

Tip

Keep a list of errors that you encounter along with what they might mean

TypeError: 'int' object is not callable

→ Hmm, I probably have number, variable, or expression followed by a (

e.g., x = 3(2+7) should be x = 3*(2+7)

NameError: name 'total' is not defined

→ Hmm, I probably have variable named total that I never assigned a value
num = 10

mean = total/num

Functions

Variables and Types

type vs isinstance
Both work to check

More complex

Poll 8 (unused)

What is this?

A) Apple

B) Banana

C) Fruit

D) Food

type vs isinstance
Both work to check

More complex

Poll 9 (unused)

What should this print?

print(0.1 + 0.1 + 0.1 == 0.3)

A) bool

B) True

C) False

D) Yes

E) No

Issues with floats
Equality

x = 0.1 + 0.1 + 0.1

y = 0.3

x == y # Doesn’t work well with floats

▪ Use 112: almostEqual(x, y)

Rounding

round(x) # Doesn’t work as you might expect

▪ Use 112: roundHalfUp(x)

Conditionals

Appendix
Additional examples with neural networks

Three-neuron neural network
Handout

𝑥

𝑎𝐵

𝑎𝐴

𝑦

A

𝑎𝐴: ______

𝑎𝐵: ______

Neuron

Neuron

Neuron (2D)
B

C

Network

Parameters

𝑚𝐴: -0.01 𝑏𝐴: 0.7

𝑚𝐵: 0.05 𝑏𝐵: -3.5

𝑚𝐶,1: 1.0 𝑏𝐶: 1.5

𝑚𝐶,2: 1.0

Input 𝑥: ______

Output 𝑦: ______

Neural Network Components
Handout

𝑥2

𝑥1

𝑎Linear (2D)𝑧 ReLULinear

Neuron
Neuron (2D)

𝑥 𝑦
Linear
𝑚𝑥 + 𝑏

Parameters
𝑚: slope
𝑏: intercept

𝑥

𝑧 𝑎
ReLU

max(0, 𝑧)

𝑎

𝑥2

𝑥1

Linear (2D)
𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏

ReLU𝑧

𝑦

Parameters
𝑚1: slope
𝑚2: slope
𝑏: offset

Three-neuron neural network
Handout

𝑥

𝑎𝐵

ReLU
max(0, 𝑧𝐴)

𝑎𝐴

𝑦
Linear (2D)

𝑚𝐶,1𝑎𝐴 +𝑚𝐶,2𝑎𝐵 + 𝑏𝐶

A

𝑧𝐵

𝑧𝐴

𝑧𝐴: ______ 𝑎𝐴: ______

𝑧𝐵: ______ 𝑎𝐵: ______

Linear
𝑚𝐴𝑥 + 𝑏𝐴

ReLU
max(0, 𝑧𝐵)

Linear
𝑚𝐵𝑥 + 𝑏𝐵

Neuron

Neuron

Neuron (2D)

B

C

Parameters

𝑚𝐴: -0.01 𝑏𝐴: 0.7

𝑚𝐵: 0.05 𝑏𝐵: -3.5

𝑚𝐶,1: 1.0 𝑏𝐶: 1.5

𝑚𝐶,2: 1.0

Input 𝑥: ______

Output 𝑦: ______

Network

Example: Three-neuron neural network
Code – first pass: moving top-down
def network(x):

Return y, the output of the network

pass # for now

def neuron(x, m, b):

Return a, the output of one neuron

pass # for now

def linear(x, m, b):

print(f'Inside linear({m}, {x}, {b}')

return m*x + b

Neuron

TODO later

𝑥 𝑦
Linear
𝑚𝑥 + 𝑏

𝑥 𝑎

Network

TODO later𝑥 𝑦

Example: Three-neuron neural network
Code – move back up to implement neuron
def network(x):

Return y, the output of the network

pass # for now

def neuron(x, m, b):

z = linear(x, m, b)

a = relu(z)

return a

def linear(x, m, b):

return m*x + b

def relu(z):

return max(0, z)

𝑧 ReLULinear

Neuron

𝑥 𝑦
Linear
𝑚𝑥 + 𝑏

𝑥

𝑧 𝑎
ReLU

max(0, 𝑧)

𝑎

Network

TODO later𝑥 𝑦

Example: Three-neuron neural network
Adding slightly different versions of linear and neuron to
handle two input values rather than just one

▪ Side-note: once we get to lists, we won’t need different
versions

def linear2D(x1, x2, m1, m2, b):

return m1*x1 + m2*x2 + b

def neuron2D(x1, x2, m1, m2, b):

z = linear2D(x1, x2, m1, m2, b)

a = relu(z)

return a

relu still just takes on input
𝑥2

𝑥1

𝑎Linear (2D)

Neuron (2D)

𝑥2

𝑥1

Linear (2D)
𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏

ReLU𝑧

𝑦

Parameters
𝑚1: slope
𝑚2: slope
𝑏: offset

Example: Three-neuron neural network
Code – quick adjustment to neuron code: sometimes ReLU is optional
def neuron(x, m, b, useReLU):

z = linear(x, m, b)

if useReLU:

a = relu(z)

else:

a = z

return a

def neuron2D(x1, x2, m1, m2, b, useReLU):

z = linear2D(x1, x2, m1, m2, b)

if useReLU:

a = relu(z)

else:

a = z

return a

𝑧 ReLULinear

Neuron

𝑥 𝑎

𝑥2

𝑥1

𝑎Linear (2D)

Neuron (2D)

ReLU𝑧

Example: Three-neuron neural network
Code – Putting the network together!!

def network(x, mA, bA, mB, bB, mC1, mC2, bC):

aA = neuron(x, mA, bA, useReLU=True)

aB = neuron(x, mB, bB, useReLU=True)

y = neuron2D(aA, aB, mC1, mC2, bC, useReLU=False)

return y

𝑥

𝑎𝐵

𝑎𝐴

𝑦

A
Neuron

Neuron

Neuron (2D)
B

C

Network

Parameters

𝑚𝐴: -0.01 𝑏𝐴: 0.7

𝑚𝐵: 0.05 𝑏𝐵: -3.5

𝑚𝐶,1: 1.0 𝑏𝐶: 1.5

𝑚𝐶,2: 1.0

Example: Three-neuron neural network
Code – Using to predict traffic in Minneapolis, Minnesota
xNew = 8 # What is the traffic like at 8 am?

yPredicted = network(xNew, mA, bA, mB, bB, mC1, mC2, bC)
Parameters

𝑚𝐴: 0.4 𝑏𝐴: -5.9

𝑚𝐵: -0.6 𝑏𝐵: 5.2

𝑚𝐶,1: -1.0 𝑏𝐶: 5.1

𝑚𝐶,2: -1.0

