
As you walk in

Quiz will start at the beginning of lecture

▪ Have pencil/pen ready

▪ Don’t use your own scratch paper

▪ We have some if you need it

▪ Silence phones

Quiz

Before we start

▪ Don’t open until we start

▪ Make sure your name and Andrew ID are on the front

▪ Read instruction page

▪ No questions (unless clarification on English)

Additional info

▪ 20 min

15-112
Lecture 2

Week 10 Tue

Backtracking &
Object-Oriented
Programming 2

Instructor: Pat Virtue

Announcements
Last quiz!

Hack 112!

TP

▪ Wed: decision form due

▪ Sat: last day for tech demos

▪ No grace days

▪ Extensions extremely rare

▪ Cite everything!

Backtracking
Incredibly generic problem-solving algorithm

Backtracking: N-Queens Example
N-by-N chessboard

Place exactly N queen pieces on the board, such that no queens are in
positions to attack each other

▪ Queens can move any number of spaces:

▪ Horizontally

▪ Vertically

▪ Diagonally

Backtracking: N-Queens Example
solve(board)

1. If all Qs placed

Return board as solution!

2. For each valid action

a) Apply action

b) Recurse: result = solve(board)

c) If result is success

Return result

Else

Undo action

3. Return failure

Backtracking: N-Queens Example

Backtracking: N-Queens example
Code demo

https://www.cs.cmu.edu/~112/notes/notes-recursion-part2.html#nQueens

https://www.cs.cmu.edu/~112/notes/notes-recursion-part2.html#nQueens

Backtracking: Solving maze example
Start: top-left

Goal: bottom-right

Strategy

▪ Path: Keep ordered list of locations representing the current path

▪ Visited: Avoid revisiting same locations by storing

▪ Try actions in order: N, S, E, W

▪ Recursively solve from next location

Backtracking: Solving maze example
solve(maze, path, visited)

1. If at goal

Return path as solution!

2. For each valid action

a) Apply action

b) Recurse:

result = solve(maze, path, visited)

c) If result is success

Return result

Else

Undo action

3. Return failure

Backtracking pattern

solve(maze, path, visited)

1. If at goal

Return path as solution!

2. For each valid action

a) Apply action

b) Recurse:

result = solve(maze, path, visited)

c) If result is success

Return result

Else

Undo action

3. Return failure

solve(board)

1. If all Qs placed

Return board as solution!

2. For each valid action

a) Apply action

b) Recurse:

result = solve(board)

a) If result is success

Return result

Else

Undo action

3. Return failure

Maze N-Queens

OOP – next level

Special methods

__str__(self):

__repr__(self):

__eq__(self, other):

OOP: Inheritance

