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Learning Goals

• Identify core parts of trees, including nodes, children, the root, and 
leaves

• Use binary trees implemented with dictionaries when reading and 
writing code
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Trees
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Trees Hold Hierarchical Data

Sometimes we work with data that is hierarchical in nature. In this 
context, 'hierarchical' means that data occurs at different levels and is 
connected in some way.

Hierarchical data shows up in many different contexts.
• File systems in computers – each folder is a rank above the files it contains
• Company organization schemas – the CEO at the top, interns at the bottom
• Sports tournament brackets – the overall winner is ranked highest
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Trees are Hierarchical

A tree is a hierarchical data structure 
composed of nodes (circles in the 
example shown to the right).

Each node can hold a value (its 
data).

The node connected the level above 
a node is called its parent, and nodes 
connected on the level below are 
called its children. In general, a node 
has exactly one parent and can have 
any number of children.

6

3

5 7

1 4

9

8

value 5

node 5's children

node 5's parent



Trees are Upside-down

Unlike real trees, trees in computer science 
grow downward!

The top-most node is called the root. Every 
(non-empty) tree has a root. The root has 
no parent.

On the other hand, a node can have other 
nodes as children, and those nodes can 
have children as well. The number of levels 
a tree can have is unlimited.

Nodes that have no children are called 
leaves.
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Trees are Recursive

A tree is a naturally recursive data 
structure. Each node's children are 
subtrees, which are just trees again.

For example, the root node 3 has two 
subtrees. The subtree on the left has a root 
node 5. The subtree on the right has a root 
node 7. Each of these root nodes have 
subtrees as children.

Our base case can be a leaf (or even an 
empty tree). 

The recursive case makes the problem 
smaller by repeating on the children, which 
are also trees.
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Binary Trees

It's possible to write algorithms 
for trees that have an arbitrary 
number of children, but in this 
class we'll focus on binary trees.

A binary tree is a tree that can 
have at most 2 children per node. 
We assign these children names-
left and right, based on their 
position.

9

6

3 2

7 98

6's left child 6's right child



Activity: Find the Tree Parts

Given the tree shown to the right:
• What is the root?
• What are the children of node 

X?
• What is the node X's parent?
• What are the leaves?
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Coding with Trees
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Implementing New Data Structures

Computer science uses a large number of classical data structures. 
Some of these (like lists and dictionaries) are implemented directly by 
Python. Others are not implemented directly; we need to design an 
implementation ourselves.

Python does not implement trees directly. We'll implement trees using
recursively nested dictionaries.

Sidebar: these trees will be mutable; we can change the values in them 
and add/remove nodes. That's beyond the scope of this class, though.
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Python Syntax – Trees as Dictionaries
Each node of the tree will be a dictionary 
that has three keys.

• The first key is the string "contents", 
which maps to the value in the node.

• The second key is the string "left", 
which either maps to a node 
(dictionary) if the node has a left child, 
or None if there is no left child.

• The third key is the string "right", 
which either maps to a node 
(dictionary) if the node has a right child, 
or None if there is no right child.

Our example tree is written as a 
dictionary to the right.

t = { "contents" : 6,
"left"  : { "contents" : 3,

"left"  : { "contents" : 8,
"left"  : None,
"right" : None },

"right" : { "contents" : 7,
"left"  : None,
"right" : None } },

"right" : { "contents" : 2,
"left"  : None,
"right" : { "contents" : 9,

"left"  : None,
"right" : None } } }
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Simple Example: getChildren(t)

Given a tree, how can we get the 
children of the root node?

Access the "left" and "right"
subtrees directly, then access their 
"contents", if they exist.

Note that we use two separate ifs, 
not an if-elif, because it's 
possible for both to be True.

def getChildren(t):

result = []

if t["left"] != None:
leftT = t["left"]

result.append(leftT["contents"])
if t["right"] != None:

rightT = t["right"]

result.append(rightT["contents"])
return result
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Use Recursion When Coding with Trees
Because this is a recursive data structure, we'll usually need to use recursion to 
operate on trees.

The base case is when the current node is a leaf and we need to do something with 
its value.

In the recursive case, we'll call the function recursively on the left child and then 
call again on the right child, if both exist. Usually we'll then combine those results 
in some way with the node's value.

Alternative approach: Make the base case when the tree is None (an empty tree) 
and always recurse on both left and right children in the recursive case. This can be 
more confusing to think about but is often simpler to program.
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Example: countNodes

Let's write a program that takes a 
tree of values and counts the 
number of nodes in the tree.

The base case: return 1 (a single 
node).

The recursive case: add the counts 
of the left and right subtrees 
together if they exist, then add 1 
more for the current node.

def countNodes(t):
if t["left"] == None and \

t["right"] == None:
return 1

else:
count = 0
if t["left"] != None:

count += countNodes(t["left"])
if t["right"] != None:

count += countNodes(t["right"])
return count + 1
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Example: countNodes – Different Base Case

Alternatively, we could solve this by 
checking a different base case: 
whether the node is an empty tree 
(if the current node is None).

An empty tree has 0 nodes; a non-
empty tree has a number of nodes 
based on its two subtrees, plus the 
current node.

The difference here is that there are  
always recursive calls to both 
children, even if they might be None.

def countNodes(t):
if t == None:

return 0
else:

count = 0
count += countNodes(t["left"])
count += countNodes(t["right"])
return count + 1
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Example: sumNodes(t)

What if we instead wanted to add all the nodes 
in the tree? (Let's assume it's a tree of integers). 
Now we'll need to use the nodes' values.

Base case: directly return the value of the only 
node (the leaf).
Recursive case: combine the sums of the two 
subtrees (if they exist) with the current node's 
value.

Our code structure is very similar to 
countNodes, but now we're using 
t["contents"].

def sumNodes(t):
if t["left"] == None and \

t["right"] == None:
return t["contents"]

else:
result = 0
if t["left"] != None:
result += sumNodes(t["left"])

if t["right"] != None:
result += sumNodes(t["right"])

return result + t["contents"]

18



Activity: listValues

You do: write the function listValues(t), which takes a tree and returns 
a list of all the values in the tree. The values can be in any order, but try to 
put them in left-to-right order if possible.

Hint: this is almost the same structure as sumNodes, but you need to 
consider the type of the values you'll return.

Given our example tree (shown below), the function returns:                                    
[8, 3, 7, 6, 2, 9].

You can test your code by copying the example tree's
implementation on Slide 13.
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Learning Goals

• Identify core parts of trees, including nodes, children, the root, and 
leaves

• Use binary trees implemented with dictionaries when reading and 
writing code
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Additional Slides
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Advanced Example: Family Trees

Now let's write a function that takes a genealogical family tree as data.

We have to flip the tree – the person creating the tree is at the root, their 
parents are the node's children, etc.
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Advanced Example: getPastGen

We want to find all the child's 
ancestors from N generations ago. 
N=1 would be their parents; N=2 
would be grandparents; etc.

Note that for this problem, our 
base case is not a leaf- it's when 
we reach the generation we're 
looking for.

def getPastGen(t, n):

if n == 0:

return [ t["contents"] ]
else:

gen = [ ]
if t["left"] != None:

gen += getPastGen(t["left"], n-1)

if t["right"] != None:
gen += getPastGen(t["right"], n-1)

return gen
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