
Trees
15-110 – Wednesday 02/28

Quizlet 4

2

Learning Goals

• Identify core parts of trees, including nodes, children, the root, and
leaves

• Use binary trees implemented with dictionaries when reading and
writing code

3

Trees

4

Trees Hold Hierarchical Data

Sometimes we work with data that is hierarchical in nature. In this
context, 'hierarchical' means that data occurs at different levels and is
connected in some way.

Hierarchical data shows up in many different contexts.
• File systems in computers – each folder is a rank above the files it contains
• Company organization schemas – the CEO at the top, interns at the bottom
• Sports tournament brackets – the overall winner is ranked highest

5

Trees are Hierarchical

A tree is a hierarchical data structure
composed of nodes (circles in the
example shown to the right).

Each node can hold a value (its
data).

The node connected the level above
a node is called its parent, and nodes
connected on the level below are
called its children. In general, a node
has exactly one parent and can have
any number of children.

6

3

5 7

1 4

9

8

value 5

node 5's children

node 5's parent

Trees are Upside-down

Unlike real trees, trees in computer science
grow downward!

The top-most node is called the root. Every
(non-empty) tree has a root. The root has
no parent.

On the other hand, a node can have other
nodes as children, and those nodes can
have children as well. The number of levels
a tree can have is unlimited.

Nodes that have no children are called
leaves.

7

3

5 7

1 4

9

8

leaves

root

Trees are Recursive

A tree is a naturally recursive data
structure. Each node's children are
subtrees, which are just trees again.

For example, the root node 3 has two
subtrees. The subtree on the left has a root
node 5. The subtree on the right has a root
node 7. Each of these root nodes have
subtrees as children.

Our base case can be a leaf (or even an
empty tree).

The recursive case makes the problem
smaller by repeating on the children, which
are also trees.

8

3

5 7

1

root

4 8

subtree
subtree

Binary Trees

It's possible to write algorithms
for trees that have an arbitrary
number of children, but in this
class we'll focus on binary trees.

A binary tree is a tree that can
have at most 2 children per node.
We assign these children names-
left and right, based on their
position.

9

6

3 2

7 98

6's left child 6's right child

Activity: Find the Tree Parts

Given the tree shown to the right:
• What is the root?
• What are the children of node

X?
• What is the node X's parent?
• What are the leaves?

10

S

T E

LX

HA R

Coding with Trees

11

Implementing New Data Structures

Computer science uses a large number of classical data structures.
Some of these (like lists and dictionaries) are implemented directly by
Python. Others are not implemented directly; we need to design an
implementation ourselves.

Python does not implement trees directly. We'll implement trees using
recursively nested dictionaries.

Sidebar: these trees will be mutable; we can change the values in them
and add/remove nodes. That's beyond the scope of this class, though.

12

Python Syntax – Trees as Dictionaries
Each node of the tree will be a dictionary
that has three keys.

• The first key is the string "contents",
which maps to the value in the node.

• The second key is the string "left",
which either maps to a node
(dictionary) if the node has a left child,
or None if there is no left child.

• The third key is the string "right",
which either maps to a node
(dictionary) if the node has a right child,
or None if there is no right child.

Our example tree is written as a
dictionary to the right.

t = { "contents" : 6,
"left" : { "contents" : 3,

"left" : { "contents" : 8,
"left" : None,
"right" : None },

"right" : { "contents" : 7,
"left" : None,
"right" : None } },

"right" : { "contents" : 2,
"left" : None,
"right" : { "contents" : 9,

"left" : None,
"right" : None } } }

13

6

3 2

7 98

Simple Example: getChildren(t)

Given a tree, how can we get the
children of the root node?

Access the "left" and "right"
subtrees directly, then access their
"contents", if they exist.

Note that we use two separate ifs,
not an if-elif, because it's
possible for both to be True.

def getChildren(t):

result = []

if t["left"] != None:
leftT = t["left"]

result.append(leftT["contents"])
if t["right"] != None:

rightT = t["right"]

result.append(rightT["contents"])
return result

14

Use Recursion When Coding with Trees
Because this is a recursive data structure, we'll usually need to use recursion to
operate on trees.

The base case is when the current node is a leaf and we need to do something with
its value.

In the recursive case, we'll call the function recursively on the left child and then
call again on the right child, if both exist. Usually we'll then combine those results
in some way with the node's value.

Alternative approach: Make the base case when the tree is None (an empty tree)
and always recurse on both left and right children in the recursive case. This can be
more confusing to think about but is often simpler to program.

15

Example: countNodes

Let's write a program that takes a
tree of values and counts the
number of nodes in the tree.

The base case: return 1 (a single
node).

The recursive case: add the counts
of the left and right subtrees
together if they exist, then add 1
more for the current node.

def countNodes(t):
if t["left"] == None and \

t["right"] == None:
return 1

else:
count = 0
if t["left"] != None:

count += countNodes(t["left"])
if t["right"] != None:

count += countNodes(t["right"])
return count + 1

16

Example: countNodes – Different Base Case

Alternatively, we could solve this by
checking a different base case:
whether the node is an empty tree
(if the current node is None).

An empty tree has 0 nodes; a non-
empty tree has a number of nodes
based on its two subtrees, plus the
current node.

The difference here is that there are
always recursive calls to both
children, even if they might be None.

def countNodes(t):
if t == None:

return 0
else:

count = 0
count += countNodes(t["left"])
count += countNodes(t["right"])
return count + 1

17

Example: sumNodes(t)

What if we instead wanted to add all the nodes
in the tree? (Let's assume it's a tree of integers).
Now we'll need to use the nodes' values.

Base case: directly return the value of the only
node (the leaf).
Recursive case: combine the sums of the two
subtrees (if they exist) with the current node's
value.

Our code structure is very similar to
countNodes, but now we're using
t["contents"].

def sumNodes(t):
if t["left"] == None and \

t["right"] == None:
return t["contents"]

else:
result = 0
if t["left"] != None:
result += sumNodes(t["left"])

if t["right"] != None:
result += sumNodes(t["right"])

return result + t["contents"]

18

Activity: listValues

You do: write the function listValues(t), which takes a tree and returns
a list of all the values in the tree. The values can be in any order, but try to
put them in left-to-right order if possible.

Hint: this is almost the same structure as sumNodes, but you need to
consider the type of the values you'll return.

Given our example tree (shown below), the function returns:
[8, 3, 7, 6, 2, 9].

You can test your code by copying the example tree's
implementation on Slide 13.

19

6

3 2

7 98

Learning Goals

• Identify core parts of trees, including nodes, children, the root, and
leaves

• Use binary trees implemented with dictionaries when reading and
writing code

20

Additional Slides

21

Advanced Example: Family Trees

Now let's write a function that takes a genealogical family tree as data.

We have to flip the tree – the person creating the tree is at the root, their
parents are the node's children, etc.

22

root

leaf

person

parents

grandparents

Advanced Example: getPastGen

We want to find all the child's
ancestors from N generations ago.
N=1 would be their parents; N=2
would be grandparents; etc.

Note that for this problem, our
base case is not a leaf- it's when
we reach the generation we're
looking for.

def getPastGen(t, n):

if n == 0:

return [t["contents"]]
else:

gen = []
if t["left"] != None:

gen += getPastGen(t["left"], n-1)

if t["right"] != None:
gen += getPastGen(t["right"], n-1)

return gen

23

24

15

9 20

11 176

144 8

15

9 19

11 182

121 4

