
Exam 1 Review
15-110 – Monday 02/19

Announcements

• Check3 was due today

• Check2/Hw2 revision deadline tomorrow (Tuesday) at noon!

• No Gradescope exercise today (no new material)

• Exam1 on Wednesday!
• Bring your paper notes (<= 5 pages), something to write with, and your andrewID

card
• Arrive early if possible – we're checking IDs at the door

2

Announcements – Code Reviews
• Code reviews!

• What: meet with a TA for 10-15 minutes to get qualitative feedback on your code from your Hw2
submission. Attending the meeting and actively participating gets you 5 points on Hw3.

• Why: code style and structure are important, but not assessed by the autograder. The TA will point
out different ways to solve the problems and areas where you can code more clearly or more
robustly
• Some students may be exempted from this meeting if they already have good style. We’ll let you know if you're

in that group before sign-ups are released.
• When: this weekend (Saturday-Sunday, a few slots on Monday)
• Where: TA's choice

• How to sign up for a code review slot
• Link: TBA on Piazza
• Important: sign-ups for each TA slot close 5pm Friday
• Also important: don't be late! If you are more than 3 minutes late to your meeting, you will not

get credit on Hw3.
• If something comes up and you need to cancel, notify the TA at least an hour before your timeslot. Do

not do this multiple times.

3

Review Topics

• Quick Strings Refresher
• For Loops
• Nesting
• Circuit Addition

4

Strings

5

Indexing

In a string (or list), each character (item) has a specific position. Positions start at
0 and go to len(value) - 1.

You can access an individual character from a string (item from a list) with
indexing, using square brackets with something that evaluates to an integer.

s = "studying"
s[3] # "d"
x = 5
s[x] # "i"
s[len(s) – 1] # "g"

6

Slicing

You can also extract a substring from a string (or sublist from a list) using slicing.
Slicing uses square brackets with colons in between to specify the start, end, and
step of a slice.

If any of these three components are left blank, they evaluate to a default value – 0
for start, len(value) for end, 1 for step. If the step is left to a default, the second
colon can also be removed.
ready = "Lots of practice!"
ready[8:len(ready)]
 # "practice!"
ready[0:8:2]
 # "Lt f"

If you need to calculate slices or
indices in a string, make it easy on
yourself by writing the index
values beneath the characters!

L o t s o f p r a c t i c e !
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

7

You Do: Practice Coding with Indexing/Slicing

You do: write several short lines of code using indexing and slicing to
solve problems.

1. What slice of a string s would evaluate to the same string, but missing
the first and last characters?

2. What index would access the middle character from a string s? (You
can assume it has odd length).

3. What expression would produce a 'doubled' version of a string s; for
example, the string "coding" would become "codcodinging"?

8

For Loops

9

For Loops

A loop is a control structure that lets you repeat a number of
statements (the body of the loop) a certain number of times.

A for-range loop implements this looping by setting the loop control
variable to a pre-determined set of numbers. The numbers are
generated by the range expression.

We usually use for loops when we know exactly how many times we
need to loop.

10

Example: Code Reading

Consider the following code snippet:

count = 0
for x in range(1, 101):
 if isPrime(x):
 print(x)
 count = count + 1
print("Total:", count)

If we assume that isPrime has been written and works correctly, what does this
do?

11

For Loops over Strings

A common pattern is to loop over each character of a string, and check a property
or use the character in a computation.
Here’s an example:

def allA(s):
 result = ""
 for i in range(len(s)):
 if s[i] == "a":
 result = result + s[i]
 return result

What will this function return if called on the string "banana"?
12

For Loops over Strings

You do: Write findMatches(s1, s2), which takes two same-length strings and
returns True if they ever have the same character at the same index, and False
otherwise.
Examples:
findMatches("apple", "guava") returns False.
findMatches("apple", "grape") returns True, because the es match.

13

Example: Code Writing

Now let's write code with a for loop. Let's write the function
countDoubleLetters which counts the number of double-letters
that occur within a string.

For example, countDoubleLetters("bookkeeper") would
return 3, because there are three sets of double letters ("oo", "kk",
and "ee").

14

Nesting

15

Nesting Changes a Program's Control Flow

Nesting is the process of indenting control structures so that they
occur inside other control structures. It is used to manipulate the
control flow of a program to produce certain intended effects.

So far, we've learned about several control structures: function
definitions, conditionals, while loops, and for loops. All of these
structures have bodies, and each can be indented so it occurs inside
the body of another structure.

16

Common Nested Structures - Functions

Though any nesting configuration you can think of is possible, some
arrangements are more common than others.

Functions – we usually write function definitions at the top level of a program,
and nest conditionals/loops inside them when they're needed. When we return
in a nested conditional/loop, we exit that structure and the whole function
immediately.

def hasVowels(s):
 for i in range(len(s)):
 if s[i] in "aeiou":
 return True
 return False

Note how the loop is indented inside the
function, and its body is indented again.

If the line 'return True' is reached, the
function will exit immediately without
finishing the loop.

17

Common Nested Structures - Functions

It’s also common to include a function call inside the definition of another function.
You do: what will this print?

def foo(a, b):
 y = a + b
 print("y in foo:", y)
 return y + 3
def bar(x):
 y = x + 1
 print("y in bar:", y)
 return foo(x, y)
print(bar(4))

18

Common Nested Structures – Loop-Conditionals

Loop-Conditional – very often we nest a conditional inside a loop to check a certain
property for every element that is iterated over.

While it's possible to pair an else with the nested if, it's only used if there's a clear
alternative action. It's okay to do nothing on iterations that don't meet the requirement!

def countVowels(s):
 result = 0
 for i in range(len(s)):
 if s[i] in "aeiou":
 result = result + 1
 return result

We don't need to update
result if the letter isn't a
vowel, so do nothing instead.

19

Common Nested Structures – Nested Loop

Nested Loop – if you need to iterate over multiple dimensions, a nested loop (one
loop nested inside another) will manage the complex iteration. Each loop control
variable manages one dimension.

It's important that the two loop control variables have different names, so that they
can be referred to separately!

def coordinates(x, y):
 for xNum in range(x):
 for yNum in range(y):
 print("(" + str(xNum) + ", " +
 str(yNum) + ")")

The outer loop moves more 'slowly',
as it only iterates once for each
complete working of the inner loop.

20

Addition in Circuits

21

Addition Using Circuits

Let's consider this problem a new way by starting from the goal and working
backwards. How can we teach a computer to add two numbers?

(Why do we care about this? Computers can only take actions that are built
into their hardware. We need to implement the core algorithmic actions –
including addition! – if we want to build programs that do interesting things.)

We can't just provide the computer numbers like 127 and 86- we have to
translate them to binary first. That way, the computer can store them as
high/low levels of electricity.

22

Adding Large Numbers

How do you as a human approach the task of adding two really large
numbers? You break it up into parts and solve each part
independently.

 1 2 7
+ 8 6

An n-bit adder will work the same way, by adding one column of
numbers at a time. But it will add binary digits, not decimal digits.

23

Adding Large Numbers

In decimal addition, you sometimes have to
carry a digit to the next column. The same
happens in binary addition.

• That means we need two output bits (the
sum for this column, and the carry to the
next)

• We also need an extra input bit to hold the
carry from the previous column

There are only three inputs (two digits and a
carried digit), so treat this like learning the
multiplication table. Memorize all the possible
inputs and their outputs.

25

0 + 0 + 0 = 00
0 + 0 + 1 = 01

0 + 1 + 0 = 01

0 + 1 + 1 = 10

1 + 0 + 0 = 01

1 + 0 + 1 = 10
1 + 1 + 0 = 10

1 + 1 + 1 = 11

Adding Large Numbers

Using some problem solving beyond the scope of this class, we can
figure out which gates to use to correctly generate the sum and carry
bits from the three inputs.

Cin X Y Cin + X + Y Cout Sum

1 1 1 11 1 1

1 1 0 10 1 0

1 0 1 10 1 0

1 0 0 01 0 1

0 1 1 10 1 0

0 1 0 01 0 1

0 0 1 01 0 1

0 0 0 00 0 0
26

Put it all together

Once we have a circuit that can add a whole column of digits (a full
adder), just chain it together with other full adders to add as many
digits as you need.

We 'carry' digits by passing the Cout result from one column to the Cin
input of the next.

27

Half Adders

Why did we learn about half adders if they aren't used in the final n-
bit adders?

Half adders provide a simplified approach to adding a single column
of numbers. They only work when a number hasn't been carried over,
but it's easier to see how the table maps to the circuit.

28

