15-110 S26 Hw2 - Written Portion

Name:

AndrewlD:

Complete the following problems in the fillable PDF, or print out the PDF, write your
answers by hand, and scan the results. Also complete the programming problems in the
starter file hw2.py from the course website.

When you are finished, upload your hw2.pdf to Hw2 - Written on Gradescope, and
upload your hw2.py file to Hw2 - Programming on Gradescope. Make sure to check
the autograder feedback after you submit!

Written Problems

#1 - Python Error Identification - 5pts

#2 - Boolean Expression to Truth Table/Circuit - 7pts
#3 - Full Adder Facts - 6pts

#4 - Code Tracing While Loops - 6pts

#5 - For Loop Control Variable Values - 6pts

#6 - Code Tracing with Indexing and Slicing - 10pts
Programming Problems

#1 - drawlllusion(canvas) - 10pts
#2 - partialProduct(n, x) - 10pts
#3 - printDiamond(n) - 10pts

#4 - printPrimeFactors(x) - 10pts
#5 - Repeating Pattern - 10pts

#6 - getSecretMessage(s, key) - 10pts

Written Problems

#1 - Python Error Identification - 5pts

Can attempt after Booleans, Conditionals, and Errors lecture

For each of the following lines of code, select whether it causes a Syntax Error,
Runtime Error, or No Error (choose only one answer each). You are guaranteed that
no code has a logical error and that no variables are defined before the code runs.

Hint: try copying and running the code to see what happens.

print("Hello World"
[] Syntax Error
[] Runtime Error
[] No Error

print(Test)
[] Syntax Error

[] Runtime Error
[] No Error

print("2+2=" + 4)
[] Syntax Error

[] Runtime Error
[No Error

X -y=25
[] Syntax Error
[] Runtime Error
[] No Error

X = 1 ==
[1 Syntax Error

[] Runtime Error
[No Error

#2 - Boolean Expression to Truth Table/Circuit - 7pts

Can attempt after Circuits and Gates lecture

Given the Boolean expression shown below, fill out the truth table to perform the same
operation as the expression. You may not need to use all the given rows. Then create a
circuit that performs the same operation as the expression.

(x and y) or (not (y xor z))

x value y value z value output value

For the circuit, you may use logic.ly, a different circuit simulator tool, or you may draw
the circuit by hand. You can click on the box on the next page to upload an image into it;
if that does not work, use a PDF editing tool (like Preview or smallpdf.com/edit-pdf) to
insert the image manually. Make sure to add the image in the correct location and/or
delete the blank page if you do this so that Gradescope will find your image correctly.

If you have trouble getting your image into the PDF, contact the course staff for help.

https://smallpdf.com/edit-pdf

Click here to add your image

If that doesn't work, see instructions on the previous page.

#3 - Full Adder Facts - 6pts

Can attempt after Circuits and Gates lecture

In class and in the lecture slides, we showed how to put together a Full Adder circuit.
For each of the following questions, choose the best answer as relates to that circuit.

What are X and Y?
[] The two whole numbers being added
[] Single binary digits of the two numbers being added
[] Two binary digits of the first number being added

What is C,,?
[] The third whole number being added
L1 A single binary digit of the third number being added
[] The number carried in from the previous addition
[] The remainder of the current addition

Why do we need two output values?
[] To manage the large number of gates
[] To account for both of the inputs
[] To hold both the result and the original number
[] To hold both the result and the number that will be carried over

#4 - Code Tracing While Loops - 6pts
Can attempt after While Loops lecture
Given the following block of code, fill out a variable table that shows the values of the

variables at the end of each iteration of the loop. You may not need to fill out values for
every listed iteration.

X =0

y = 10

Z =0

while x <= y:
X =X + 3
y =y +1

z = (X+y) -z
print(x, Y Z)

x value y value z value

Pre-loop 0 10 0

Iter 1

Iter 2

Iter 3

Iter 4

Iter 5

Iter 6

Iter 7

Iter 8

#5 - For Loop Control Variable Values - 6pts

Can attempt after For Loops lecture

For each of the following range expressions, list all the values the loop variable will be
set to over the course of the range. For example, range(1, 5) produces 1, 2, 3, 4.

Range Expression Numbers Produced

range(3)

range(4, 8)

range(1, 10, 3)

#6 - Code Tracing with Indexing and Slicing - 10pts

Can attempt after String Indexing, Slicing, and Looping lecture

Assuming that the following two lines of code have been run:

sl "coding is cool"
s2 "CMU rocks!"

What will each of the following expressions evaluate to? Don't just run the code in the
editor — try to figure out the answer on your own.

Expression Value

s1[7] + s2[6]

s1[1] + s2[len(s2)-1]

s1[7:11]

s2[2:1len(s2)-2]

si[::4]

Programming Problems

For each of these problems (unless otherwise specified), write the needed code directly
in the Python file, in the corresponding function definition.

All programming problems may also be checked by running 'Run current script' on the
starter file, which calls the function testAl11() to run test cases on all programs. When
running testAl1l(), make sure you check and close each of the graphics windows that
are produced, as they pause the tests.

Note: Hw2 is the first assignment where you will need to do a substantial amount of
coding. We encourage everyone to make good use of Piazza, office hours, and small
group sessions to get help.

In particular, if you attend a small group session in Week 4, your TA will include Problem
#1 (drawIllusion) as one of the practice problems and will provide more help in
solving the problem than is usually available at office hours.

#1 - drawIllusion(canvas) - 10pts
Can attempt after For Loops lecture
Write the function drawIllusion(canvas) which takes a Tkinter canvas and draws the

illusion shown below. You must use a loop to do this; don't hardcode a large number of
rectangles. (You can use either a while loop or a for loop, whichever you prefer).

Hint: it's easiest to make this illusion by drawing overlapping squares. Start with the
largest black square, then draw the next-largest white square, etc. You'll need to draw
10 squares total. The canvas is 400px wide, so each square should be 20 pixels smaller
on each side than the previous one (with the last square being exactly 40 pixels wide).

Another Hint: start by considering what the loop control variable should be. Which
values need to change as you move to the next square? How do those values relate to
the loop control variable? Consider our approach to drawing a grid in lecture as well.

Note: you don't need to include tkinter starter code for this or other graphics problems;
it's already included in the runDrawIllusion() test function. In fact, adding the starter
code may break the autograder!

#2 - partialProduct(n, x) - 10pts

Can attempt after For Loops lecture

Write the function partialProduct(n, x) which takes a non-negative integer x and a
non-negative integer n and returns the product n * (n+1) * (n+2) * ... * (x-1) * x. You are
guaranteed that n will always be smaller than or equal to x.

You may not use any built-in functions in the math library. Instead, you must use a for
loop to solve this problem.

For example, if you call partialProduct(3, 5) the function will return 3*4*5=60.
If you call partialProduct(1, 4) the function will return 1*2*3*4=24.
If you call partialProduct(12, 16) the function will return 12*13*14*15*16=524160.

Hint: consider the sum-1-to-10 problem we went over in lecture. You can use a very
similar approach to solve this problem.

#3 - printDiamond(n) - 10pts
Can attempt after For Loops lecture

Write a function printDiamond(n) which prints ascii art of a diamond with a size based
on the positive integer n. For example, printDiamond(4) would print:

11
2%*2
3k kkk3
PEETEEIEY]
Ik kk3

2%*2
11

Whereas printDiamond(3) would print:

11
2%%*2
kK3
2%%2
11

You'll want to create a loop where each iteration prints a single line of the ascii art. To
draw multiple spaces and multiple asterisks on a single line, consider using the *
operator, which can be used to repeat a string an integer number of times.

Hint 1: Every line is composed of three parts: outer spaces, inner asterisks, and two
numbers on the outside of the diamond. For example, the second line of the size=3
diamond has one space, then the number 2, then two asterisks, then the number 2
again. Consider each of these parts individually, observe how they change between
lines, then determine how to map the loop control variable to each part separately.

Hint 2: if you're feeling overwhelmed, simplify the problem by breaking it down into
parts! Start by just making the top half of the diamond. First, get the numbers to appear
correctly. Second, add in the asterisks. Finally, add the leading spaces.

Hint 3: how can the program switch from the increasing top half to the decreasing
bottom half? Consider using two separate loops (one going up, one going down), or a
single loop with a conditional that changes how the loop control variable is used.

#4 - printPrimeFactors(x) - 10pts

Can attempt after For Loops lecture

Using the algorithm shown below, write the function printPrimeFactors(x) which
takes a positive integer x and prints all of its prime factors in a nice format.

A prime factor is a number that is both prime and evenly divides the original number
(with no remainder). So the prime factors of 70 are 2, 5, and 7, because 2 *5* 7 = 70.
Note that 10 is not a prime factor because it is not prime, and 3 is not a prime factor
because it is not a factor of 70.

Prime factors can be repeated when the same factor divides the original number
multiple times; for example, the prime factors of 12 are 2, 2, and 3, because 2 and 3 are
both prime and 2 * 2 * 3 = 12. The prime factors of 16 are 2, 2, 2, and 2, because 2 * 2 *
2 * 2 =16. We'll display repeated factors on a single line as a power expression; for
example, 16 would display 2 ** 4, because 2 is repeated four times.

Here's a high-level algorithm to solve this problem. Start by iterating through all possible
factors. When you find a viable factor, repeatedly divide the number by that factor until
it no longer evenly divides the number and display the result. Our algorithm looks
something like this:

1. Repeat the following procedure over all possible factors (2 to x, inclusive)
a. If x is evenly divisible by the possible factor
i. Setanumber countto be 0
i. Repeat the following two steps until x is not divisible by the
possible factor
1. Set count to be count plus 1
2. Set x to be x divided by the factor
iii. Ifthe number count is exactly 1
1. Print the factor by itself
iv. If the number count is greater than 1
1. Print "f ** c", where f is the factor and c is the count

As an example, if you call printPrimeFactors(600), it should print:
2**3

3

5% 2

#5 - Repeating Pattern - 10pts

Can attempt after For Loops lecture

Write a function repeatingPattern(canvas, numCells, cellSize, showGrid)
which takes a Tkinter canvas, two integers, and a Boolean, and draws a repeating
pattern in a grid of squares, all on the given canvas. Further constraints are listed on the

next page, after a short example.

Here is a simple example of a repeating pattern on a grid that meets the constraints,
with numCells set to 4, cellSize set to 100, and showGrid set to True on the left and
False on the right. The pattern contains two calls (one to create a circle, one to create a
line) and a keyword argument (the circle color) and alternates over the rows of the grid
(even rows have the diagonal from top-left to bottom-right, odd rows have the diagonal

from top-right to bottom-left).

t

O

~

N
/

4

<

\
/

4

VY

Y VY
N N

~
/
N\
%

(continued on next page)

You can design whatever pattern you like, but your program must meet a few
constraints:

e The program must create a numCells x numCells grid of squares of the given
cellSize on the canvas based on the given parameters. The grid should only be
drawn if showGrid is True.

e Each cell of the grid must contain its own instance of a pattern. (You are welcome
to have more than one pattern, but they must repeat in some way). The instance
must be fully contained inside the cell and should not go past the borders.

e The pattern must use at least two different Tkinter function calls and at least
one keyword argument. For example, you could draw a circle with a smaller
square inside it and set the square to have a specific color.

o You cannot use the grid-square as one of the two Tkinter function calls;
the two calls must be distinctly visible when the grid is on.

e There must be at least two alternate versions of the pattern included in the grid.
The alteration can be small - perhaps you can change the color used to draw the
pattern, or the pattern's orientation, or some other way of varying what is drawn.

e The alternate patterns must alternate in a systematic fashion. This could mean
alternating over the rows, or the columns, or in diagonals, or like a checkerboard
- whatever works for you!

e To get full credit, your solution must use loops.

We strongly recommend that you start by reviewing the drawGrid code we wrote in
lecture. Consider how you could extend it to make a pattern.

Fun fact: repeating patterns with less systematic alternation were used in some of the
most famous art by Pittsburgh-native artist Andy Warhol, like the Shot Marilyns
(https://en.wikipedia.org/wiki/Shot_Marilyns).

https://en.wikipedia.org/wiki/Shot_Marilyns

#6 - decodeSecretMessage(s, key) - 10pts

Can attempt after String Indexing, Slicing, and Looping lecture

You can hide a secret message in a piece of text by setting a specific character as a
key. Place the key before every letter in the message, then fill in extra (non-key) letters
between key-letter pairs to hide the message in noise.

For example, to hide the message "computer" with the key "q", you would start with
"computer”, turn it into "qecgogmqgpquqgtgeqr”, and then add extra letters as noise,
perhaps resulting in "orupgcrzypqomgmhcygpwhhqutqtxtqeyeqrpa".

To get the original message back out, go through the message one letter at a time and
copy every letter that occurs directly after the key, ignoring the rest.

Write a function decodeSecretMessage(s, key) that takes a piece of text holding a
secret message and the key to that message and returns the secret message itself. For

example, if we called the function on the long string above and "q", it would return
"computer”. You are guaranteed that the key does not occur in the secret message.

Hint: loop over every character in the string. If the character you're on is the key, add
the next character in the string to a result string.

	Written Problems
	#1 - Python Error Identification - 5pts
	#2 - Boolean Expression to Truth Table/Circuit - 7pts
	#3 - Full Adder Facts - 6pts
	#4 - Code Tracing While Loops - 6pts
	#5 - For Loop Control Variable Values - 6pts
	#6 - Code Tracing with Indexing and Slicing - 10pts

	Programming Problems
	#1 - drawIllusion(canvas) - 10pts
	#2 - partialProduct(n, x) - 10pts
	
	#3 - printDiamond(n) - 10pts
	#4 - printPrimeFactors(x) - 10pts
	#5 - Repeating Pattern - 10pts
	#6 - decodeSecretMessage(s, key) - 10pts

	Syntax Error: Off
	Runtime Error: Off
	No Error: Off
	Syntax Error_2: Off
	Runtime Error_2: Off
	No Error_2: Off
	Syntax Error_3: Off
	Runtime Error_3: Off
	No Error_3: Off
	Syntax Error_4: Off
	Runtime Error_4: Off
	No Error_4: Off
	Syntax Error_5: Off
	Runtime Error_5: Off
	No Error_5: Off
	x valueRow1:
	y valueRow1:
	z valueRow1:
	output valueRow1:
	x valueRow2:
	y valueRow2:
	z valueRow2:
	output valueRow2:
	x valueRow3:
	y valueRow3:
	z valueRow3:
	output valueRow3:
	x valueRow4:
	y valueRow4:
	z valueRow4:
	output valueRow4:
	x valueRow5:
	y valueRow5:
	z valueRow5:
	output valueRow5:
	x valueRow6:
	y valueRow6:
	z valueRow6:
	output valueRow6:
	x valueRow7:
	y valueRow7:
	z valueRow7:
	output valueRow7:
	x valueRow8:
	y valueRow8:
	z valueRow8:
	output valueRow8:
	x valueRow9:
	y valueRow9:
	z valueRow9:
	output valueRow9:
	x valueRow10:
	y valueRow10:
	z valueRow10:
	output valueRow10:
	The two whole numbers being added: Off
	Single binary digits of the two numbers being added: Off
	Two binary digits of the first number being added: Off
	The third whole number being added: Off
	A single binary digit of the third number being added: Off
	The number carried in from the previous addition: Off
	The remainder of the current addition: Off
	To manage the large number of gates: Off
	To account for both of the inputs: Off
	To hold both the result and the original number: Off
	To hold both the result and the number that will be carried over: Off
	0Iter 1:
	10Iter 1:
	0Iter 1_2:
	0Iter 2:
	10Iter 2:
	0Iter 2_2:
	0Iter 3:
	10Iter 3:
	0Iter 3_2:
	0Iter 4:
	10Iter 4:
	0Iter 4_2:
	0Iter 5:
	10Iter 5:
	0Iter 5_2:
	0Iter 6:
	10Iter 6:
	0Iter 6_2:
	0Iter 7:
	10Iter 7:
	0Iter 7_2:
	0Iter 8:
	10Iter 8:
	0Iter 8_2:
	Numbers Producedrange3:
	Numbers Producedrange4 8:
	Numbers Producedrange1 10 3:
	ValueRow1:
	ValueRow2:
	ValueRow3:
	ValueRow4:
	ValueRow5:
	square inside it and set the square to have a specific color: Off
	Text1:
	Text2:
	Button3:

