Search Algorithmes ||

15-110 — Monday 03/10

* Welcome back from spring break!

* Check3/Hw3 Revision deadline: tomorrow at noon

* Final exam scheduled: Monday 04/28 8:30-11:30am

Do not schedule travel before this time!

* Remember to fill out the mid-semester surveys
* See announcement on Piazza

* |[dentify whether a tree is a tree, a binary tree, or a binary search tree
(BST)

e Search for values in trees using linear search and in BSTs using binary
search

* Analyze the efficiency of binary search on a balanced vs. unbalanced
BSTs

* Recognize the requirements for building a good hash function and a
good hashtable that lead to constant-time search

Binary Search Trees

Recall the first lecture on Search Algorithms, when we discussed linear
and binary search.

We've applied these algorithms to lists; can we apply them to other
data structures too? Let's investigate how to search a tree.

In linear search, we step through each element
in a list until we either find the target item or
run out of items to look at.

To visit all nodes in a tree, check if the root node
is the target, then check whether the target is in
one of the node's child subtrees. If we find the

target in either subtree, we should return True.

We also have two base cases: one for when we
reach an empty tree, and one for when we find
the target. In both cases, we know what to
return right away.

def search(t, target):

if t == None:
return False

elif t["contents"] == target:
return True

else:
leftSide = search(t["left"], target)
rightSide = search(t["right"], target)
return leftSide or rightSide

If we want to search trees more efficiently, we'll need to apply
constraints. For example, how could we apply Binary Search to a tree?

First, recall that for binary search to work the input list must be sorted.
We'll also need to find a way to split the tree similarly to how we split
the list in binary search (where we broke the list into two sides and only

looked at one side).

Discuss: how could we "sort" and "split" a tree?

We'll define a new kind of tree, a Binary
Search Tree, as a binary tree that follows
these constraints:

For every node n with value v:

* |ts left child (and all its children, etc.)
must have a value strictly less than v

* Its right child (and all its children, etc.)
must have a value strictly greater than v

The left and right subtrees must also be
BSTs. BST constraints are recursive.

When we want to search for the value 5 in
the tree to the left, we start at the root
node, 7.

Because all nodes less than 7 must be in
the left child tree and 5 is less than 7, we
only need to search the left child tree.

Then, when we compare 5 to 3, we know
that all values greater than 3 (but less than
7) must be in the right child tree of 3. We
only need to search the right child tree.

We 'split’ the tree by only looking at one of
the node's two children each time.

BST Search in Python

We would write binary search for a BST as follows:

def search(t, target):
if t == None:
return False
elif t["contents"] == target:
return True
elif target < t["contents"]:
return search(t["left"], target)
else:
return search(t["right"], target)

Note that we do just one recursive call, either on the left subtree or on the right subtree.

11

Do we get the same O(log n) runtime for
BST binary search that we did for list
binary search? It depends on the tree.

A tree is balanced if for every node in
the tree, the node's left and right
subtrees are approximately the same
size. This results in a tree that
minimizes the number of recursive
levels.

Every time you take a search step in a
balanced tree, you cut the number of
nodes to be searched in half. This
means that the algorithm will indeed
take O(log n) time.

A tree is considered unbalanced if at least
one node has significantly different sizes in
its left and right children. For example,
consider the tree on the right.

This is a valid BST, but it is still difficult to
search! You must visit every single node to
determine a number like 6 isn't in the tree.
In the worst case, this can still take O(n)
time.

When we put data into BSTs, we usually
strive to make them balanced to avoid
these edge cases. For efficiency purposes,
assume that well-designed BSTs are
balanced and the worst case is O(log n).

At first glance, BSTs may seem less useful than sorted o
lists. However, they have a few added perks!

BSTs make it much easier to add new data to a dataset. 0 9
In a sorted list, you would need to slide a bunch of
values over to make room for a new value; in a BST, you

can just run a search for this new value. When you reach a @ @
a leaf, add a node with the new value.

This is very helpful for systems like hospital priority

gueues, where patients frequently need to be moved a
around the queue based on changing circumstances.

We've now shown that we can apply linear search and binary search in
several circumstances. Binary search is faster than linear search, but can we
do even better?

We can often increase the efficiency of an algorithm by thinking about the
problem in a different way. Try using a different data structure or an entirely
different algorithmic approach to solve the problem. Or try putting new
constraints on the problem to speed the process up.

New goal: can we add more constraints to design the fastest possible search
algorithm?

Optimizing Search: Constraints

Consider how you receive mail. Your mail is sent to the post boxes at the lower level of the
UC. Do you have to check every box to find your mail? B E §E ® ® @

No - you just check the box assigned to you.

~n Lo 4

This is possible because your mail has an address on the front that includes your mailbox
number. Your mail will only be put into a box that has the same number as that address,

not other random boxes. Picking up your mail is a O(1) operation!

Compare this to picking up a package. Everyone picks up packages at the same window, so
you must wait in line. If there are n students, picking up a package is a O(n) operation.

We can't search a list for an item that
uickly, because we don't know where

the item will be. But we can look up an

item based on its index very quickly!

Python stores lists in memory as a series
of adjacent parts. Each part holds a
single value in the list, and all these parts
use the same amount of space.

We can calculate exactly where an index
is located in memory with a single

equation; no repeated search is required.

|st

a abc

True

8 bytes 8 bytes

8 bytes 8 bytes

8 bytes

8 bytes

To implement super-fast search, we want to combine the ideas of post

boxes and list index lookup. We want to determine which index a value
should be stored in based on the value itself.

If we can calculate the index based on the value, we can look for the
value really quickly without needing to check other indexes.

In order to determine which list index should be used based on the value
itself, we'll need to map values to indexes (integers).

We call a function that maps values to integers a hash function. This function
must follow two rules:

« The function should be deterministic. Given a specific value x, hash(x)
must always return the same output 1.

* The function should produce different outputs. Given two different values
x and vy, hash(x) and hash(y) should usually return two different
outputs, 1 and j.

We don't need to write our own hash function most of the time-
Python already has one!

X = "abc
hash(x)

hash works on integers, floats, Booleans, strings, and some other types
as well.

21

Optimizing Search: Hashtables

Now that we have a hash function, we can use
it to organize values in a special data
structure.

A hashtable is a structure with a fixed number
of indexes. When we place a value in the
structure, we put it into an index based on its

hash value instead of placing it in the first
open position of the structure.

We often call these indexes 'buckets'. For
example, the hashtable to the right has four

Important: actual hashtables are huge and
have far more buckets than this!

index 1

index 2

index 3

For simplicity, let's say this hashtable uses a

hash function that maps strings to indexes alphabet = "abcdefghijklmnopgrstuvwxyz"
using the first letter of the strlnﬁ, as shown def hash(s):

to the right. (This is not a good hash ' ,

function, but it will serve as an example). return alphabet.index(s[@])

First, add "book" to the table.

hash("book™) is 1, so we'll put the value — "book”
in bucket 1. yay 00

Next, add "yay". hash("yay") is 24,
which is outside the range of our table.
How do we assign it? index 0 index 1 index 2 index 3

Use value % tableSize to map integers
larger than the size of the table to an index.
24 7% 4 = 0,sowe put "yay" in bucket 0. 2

When you add lots of values to a hashtable,
two elements may collide. This happens if
they are assigned to the same index. For
example, if we try to add both "cmu" and
"code" to our table, they will collide.

Hashtables are designed to handle
collisions. One algorithm for handling
collisions is to put the collided values in a
list and put that list in the bucket. If your
table size is reasonably big and the indexes
returned by the hash function are
reasonably spread out, each bucket will
usually hold a small number of values.

Our example hash function is not good because
it only looks at the first letter. A function that
uses all the letters would be better. And our
example hashtable is far too small!

alphabet = "abcdefghijklmnopgrstuvwxyz"
def hash(s):
return alphabet.index(s[0])

Ilyayll Ilbookll ||Cmull
"code"
index O index 1 index 2 index 3

25

Let's say that we want to
| 'thy icallv check whether th alphabet = "abcdefghijklmnopgrstuvwxyz"
digorithnmically cneck wnetner tne def hash(s):

string "friday" isin our return alphabet.index(s[0])
hashtable.

] "yay" "book" "emu"
You do: Which buckets does the "code”

algorithm need to check?

index O index 1 index 2 index 3

26

To search for a value, use the same

algorithm you would use to insert that _ - "
va%ue. The index produced is the only index 31$hﬁbeﬁ .abcdefghlj klmnopgrstuvwxyz
you need to check! ef hash(s):

return alphabet.index(s[0])

For example, we can check if "book" isin
the table just by checking bucket 1.

Ilyayll Ilbookll ||Cmull
If the value is in the table, it will be at that "code”
index. If it isn't, it won't be anywhere else
either. To check for "stella" justlookin
in bucket 2.
index O index 1 index 2 index 3

Because we only need to check one index
and each index holds a constant number of
items, finding a value only takes O(1) time,

even if the hashtable is huge. Wow! :
7

What happens if you try to put a list in a

hashtable? Let'sset 1st = ["a", "z"] alphabet = "abcdefghijklmnopgrstuvwxyz"
and use the given hash to add lst def hash(s):

This might seem fine at first, but it will return alphabet.index(s[@])
become a problem if you change the list
before searching. Let's say we set

1st[0] = "d"

llyayll Ilbookll llcmull
When we hash the list again, the hashed ["a”, "] code
value is 3, not 0. But the list isn't stored in
bucket 3! We can't find it reliably.
index O index 1 index 2 index 3

For this reason, we don't put mutable
values into hashtables. If you try to run the
built-in hash on a list, it will crash.

28

Because hashed search requires immutable search values and a
hashtable, it isn't used in lists or strings. However, it is used to

implement dictionary search.

Recall that the keys of a dictionary must be immutable. This is because
those keys are all stored in a hashtable. Each key points to its own
value; that's how values can still be accessed.

This means that searching for a key in a dictionary is O(1)! Dictionaries
are super efficient for basic lookup tasks.

This has a practical effect on the efficiency of the programs you write. Recall
the built-in operator in, which checks for membership in a data structure.

item in lstrunsinlinear timeif 1st is alist, because Python can't
guarantee that the list is sorted. It uses linear search.

item 1n dict runsin constant time if dict is a dictionary, because
Python uses hashing.

If you know that you'll need to do a lot of searching for specific values, it's
better to store your data in a dictionary than a list, even if it’s a sorted list!

Hashed search is absurdly fast! It doesn't matter how large your
dataset is; you can always look up a value in the same amount of time.

This ridiculous speed of hashed search has made search a common tool
across all computational devices.

Discuss: how would your interactions on your computer, smartphone,
or other digital devices be different if search was slower? How would

this affect your day-to-day life?

* |[dentify whether a tree is a tree, a binary tree, or a binary search tree
(BST)

e Search for values in trees using linear search and in BSTs using binary
search

* Analyze the efficiency of binary search on a balanced vs. unbalanced
BSTs

* Recognize the requirements for building a good hash function and a
good hashtable that lead to constant-time search

	Slide 1: Search Algorithms II
	Slide 2: Announcements
	Slide 3: Learning Objectives
	Slide 4: Binary Search Trees
	Slide 5: Revisiting Search Algorithms
	Slide 6: Linear Search on a Tree
	Slide 7: Binary Search on a Tree
	Slide 8: Binary Search Trees (BSTs) are "sorted"
	Slide 9: Example: Is this a BST?
	Slide 10: Binary Search Trees Can Use Binary Search
	Slide 11: BST Search in Python
	Slide 12: BST Search Runtime – Balanced Trees
	Slide 13: BST Search Runtime – Unbalanced Trees
	Slide 14: Benefits of BSTs
	Slide 15: Can We Do Even Better?
	Slide 16: Optimizing Search: Constraints
	Slide 17: Search in Real Life – Post Boxes
	Slide 18: Search in Programming – List Indexes
	Slide 19: Combine the Concepts
	Slide 20: Hash Functions Map Values to Integers
	Slide 21: Built-in Hash Function
	Slide 22: Optimizing Search: Hashtables
	Slide 23: Hashtables Organize Values
	Slide 24: Adding Values to a Hashtable
	Slide 25: Dealing with Collisions
	Slide 26: You Do: Search a Hashtable
	Slide 27: Searching a Hashtable is Fast!
	Slide 28: Caveat: Don't Hash Mutable Values!
	Slide 29: Dictionaries Use Hashed Search
	Slide 30: Searching Dictionaries vs. Lists
	Slide 31: The Power of Hashing
	Slide 32: Learning Objectives

