
Dictionaries
15-110 – Friday 02/21

Announcements

• Hw3 due on Monday

• Sign up for code reviews!

• https://www.cs.cmu.edu/~110/hw/hw2-code-review.html

• Sign-ups close today at 5pm

2

https://www.cs.cmu.edu/~110/hw/hw2-code-review.html

Learning Goals

• Identify the keys and values in a dictionary

• Use dictionaries when writing and reading code that uses pairs of
data

• Use for loops to iterate over the parts of an iterable value

3

Data Structures Organize Data

So far, we've talked about efficiency in terms of algorithm design. We
can solve the same problem multiple ways, and some approaches are
more efficient than others.

We can also improve the efficiency of an algorithm by changing the
data structure we use to store incoming data. For example, a list is a
good for storing values in sequential (and indexed) order. What other
types of data might we work with?

4

Dictionaries

5

Python Dictionaries Map Keys to Values

The first data structure we'll discuss is the dictionary. Dictionaries
store data in pairs by mapping keys to values.

We use dictionary-like data in the real world all the time! Examples
include phonebooks (which map names to phone numbers), the index
of a book (which maps terms to page numbers), or the CMU directory
(which maps andrewIDs to information about people).

6

Key-Value Pairs

In a dictionary, a key-value pair is two values that have been paired together for
organizational purposes. We can access a value by looking up its key, like how we
can access a list value using its index.

For example, if we stored a phonebook in a dictionary, a key might be the string
"CMU", and its value would be the string "412-268-2000". It wouldn't make
sense to switch the roles because our default action is to look up a phone number
based on a name, not vice versa.

Note: keys must be immutable (numbers, strings, or Booleans), but values can be
any type of data. Why? We'll explain later, when we discuss more search
algorithms.

7

Python Dictionaries

Dictionaries have already been implemented for us in Python.

make an empty dictionary

d = { }

make a dictionary mapping strings to integers

d = { "apples" : 3, "pears" : 4 }

8

Python Dictionaries – Getting Values

Dictionaries are similar to lists, but they are unordered – key-value pairs don't have positions.

Instead of indexing by position, index by key:

d = { "apples" : 3, "pears" : 4 }

d["apples"] # the value paired with this key

len(d) # number of key-value pairs

If you try to access a key that doesn't exist, you'll get a runtime error. The same thing
happens if you try to index by value instead of key.

d["ice cream"] # KeyError

d[4] # KeyError

9

Python Dictionaries – Adding and Removing

How do we add a new key-value pair? Use index assignment with the key.

This works whether or not that key has been assigned a value yet. If the key is
already in the dictionary, the value for the key is updated; it does not add a new
key-value pair.

d = { "apples" : 3, "pears" : 4 }

d["bananas"] = 7 # adds a new key-value pair

d["apples"] = d["apples"] + 1 # updates the key-value pair

To remove a key-value pair, use pop with just the key as a parameter.

d.pop("pears") # destructively removes

10

Python Dictionaries – Search

We can search for a key in a dictionary using the built-in in
operation.

d = { "apples" : 3, "pears" : 4 }

"apples" in d # True

"kiwis" in d # False

We can't use in to look up the dictionary's values; we need to loop
over the keys and check each key's value instead. How do we loop
over a dictionary? We'll get there in just a moment!

11

Activity: Trace the code

In the following code, the keys represent student IDs and the values
represent student names. After running the code, which key-value pairs
will the dictionary hold?

d = { 26: "Chen", 23: "Patrick" }

d[88] = "Rosa"

d[23] = "Pat"

d[51] = d[23]

if "Chen" in d:

 d.pop("Chen")

12

For Loops over Iterables

13

Iterable Values and Loops

An iterable value is a value that can be looped over directly by a for loop. They
are often composed of some number of individual pieces of data (though not
always).

So far, strings and lists have been iterable: a string is a sequence of characters and
a list is a sequence of values. Dictionaries are also iterable, as they're composed
of key-value pairs.

With both strings and lists, the pieces of data were stored in an ordered
sequence. That meant we could identify the position of each value and use a for
loop over a range to visit each position in turn.

A dictionary is unordered. That means we can't loop over dictionaries using a for
loop with a range, as there are no positions to visit.

14

For Loops Can Repeat Over Iterable Values

We don't need a range to use a for loop. We can loop over the parts of an
iterable value directly by providing the value instead of a range.

for <itemVariable> in <iterableValue>:

 <itemActionBody>

For example, if we run the following code, it will print out each string in the list
with an exclamation point after it.

wordList = ["Hello", "World"]

for word in wordList:

 print(word + "!")

15

For Loops on Dictionaries

When we run a for loop directly over a dictionary, the loop visits all
key-value pairs in some order. The loop control variable will hold the
key of each key-value pair. To access the value, you must index into
the dictionary with that key.

d = { "apples" : 5, "beets" : 2, "lemons" : 1 }
for k in d:
 print("Key:", k)
 print("Value:", d[k])

16

For-Range vs For-Iterable

When should you use a For-Iterable
loop instead of a For-Range loop?

For dictionaries, always use a For-
Iterable loop. There are no indexes,
so you can't use For-Range.

For strings and lists, you can iterate
directly over the values if you don't
need the indexes. For example, to
sum a list, you could use either:

result = 0

for item in lst:

 result = result + item

or:

result = 0
for i in range(len(lst)):
 result = result + lst[i]

17

Coding with Dictionaries

20

Example: Processing Dictionaries

Problem-solving with dictionaries
often (but not always) involves
looping over the dictionary and
doing something with each key-
value pair.

For example, the following
program can sum all the values in
a dictionary by capturing each
value from its key.

def addValues(d):

 total = 0

 for key in d:

 total = total + d[key]

 return total

21

Example: Building Dictionaries

Another common task is to create a
new dictionary based on existing
values. In this case it is important to
track which keys have already been
added and need to be updated.

For example, we can create an
alphabet dictionary for a list of
strings. For each letter, create a new
list if the letter has not been seen
before, or add to the existing list if it
has been seen.

def makeAlphabetDict(words):

 d = { }

 for word in words:

 letter = word[0]

 if letter not in d:

 d[letter] = [word]

 else:

 d[letter].append(word)

 return d

22

Example: Nested Dictionary

We can even use nested dictionaries in
a similar way to how we use nested (2D)
lists. Just map each key to another
dictionary (which will map other keys to
specific values).

For example, we can create a
multiplication table in a nested
dictionary (outer keys are x, inner keys
are y, values are x*y).

def createMultDict(n):

 d = { }

 for x in range(1, n+1):

 innerD = { }

 for y in range(1, n+1):

 innerD[y] = x * y

 d[x] = innerD

 return d

23

[if time] Activity: hasShortKeys(d, limit)

You do: write a program that takes a dictionary mapping strings to
numbers and a limit (a number) and returns True if all the keys are at
most the limit in length, and False otherwise.

For example, hasShortKeys({ "abc" : 2, "de" : 5}, 3)
would return True, but hasShortKeys({ "abc" : 2, "defgh"
: 2}, 4) would return False.

24

Learning Goals

• Identify the keys and values in a dictionary

• Use dictionaries when writing and reading code that uses pairs of
data

• Use for loops to iterate over the parts of an iterable value

26

Advanced Examples
Bonus slides

27

Coding with Dictionaries – Track Information

We often use dictionaries when
problem-solving. One common use
of dictionaries is to track
information about a list of values.

For example, given a 2D list of
students and their colleges (a list of
two-element lists of "student"
and "college"), how many
students are in each college?

We will create a dictionary with
colleges as the keys and the student
counts as the values.

def countByCollege(studentLst):

 collegeDict = { }

 for pair in studentLst:

 name = pair[0]

 college = pair[1]

 if college not in collegeDict:

 collegeDict[college] = 0

 collegeDict[college] += 1

 return collegeDict

countByCollege([["erhurst" ,"CIT"],
["neerajsa","SCS"], ["cosorio","DC"],
["dtoussai", "CIT"]])

28

Coding with Dictionaries – Find Most Common

We also use dictionaries to find
the most common element of a
list, by mapping elements to
counts.

For example, given the dictionary
returned by the previous function,
which college is the most
popular?

def mostPopularCollege(collegeDict):

 best = None

 bestScore = -1

 for college in collegeDict:

 if collegeDict[college] > bestScore:

 bestScore = collegeDict[college]

 best = college

 return best

29

	Slide 1: Dictionaries
	Slide 2: Announcements
	Slide 3: Learning Goals
	Slide 4: Data Structures Organize Data
	Slide 5: Dictionaries
	Slide 6: Python Dictionaries Map Keys to Values
	Slide 7: Key-Value Pairs
	Slide 8: Python Dictionaries
	Slide 9: Python Dictionaries – Getting Values
	Slide 10: Python Dictionaries – Adding and Removing
	Slide 11: Python Dictionaries – Search
	Slide 12: Activity: Trace the code
	Slide 13: For Loops over Iterables
	Slide 14: Iterable Values and Loops
	Slide 15: For Loops Can Repeat Over Iterable Values
	Slide 16: For Loops on Dictionaries
	Slide 17: For-Range vs For-Iterable
	Slide 20: Coding with Dictionaries
	Slide 21: Example: Processing Dictionaries
	Slide 22: Example: Building Dictionaries
	Slide 23: Example: Nested Dictionary
	Slide 24: [if time] Activity: hasShortKeys(d, limit)
	Slide 26: Learning Goals
	Slide 27: Advanced Examples
	Slide 28: Coding with Dictionaries – Track Information
	Slide 29: Coding with Dictionaries – Find Most Common

