Exam 1 Review

15-110 — Monday 02/17



* Check3 was due today
* Check2/Hw?2 revision deadline tomorrow (Tuesday) at noon!
* No Gradescope exercise today (no new material)

* Exam1 on Wednesday!

* Bring your paper notes (<=5 pages), something to write with, and your andrewlID
card

* Arrive early if possible — we're checking IDs at the door



* Code reviews!

* What: meet with a TA for 10-15 minutes to get qualitative feedback on your code from your Hw2
submission. Attending the meeting and actively participating gets you 5 points on Hw3.

* Why: code style and structure are important, but not assessed by the autograder. The TA will point
ouk’g dlfrerent ways to solve the problems and areas where you can code more clearly or more
robustly

* Some students may be exempted from this meeting if they already have good style. We’'ll let you know if you're
in that group by Monday EOD.

* When: this weekend (Saturday-Sunday, a few slots on Monday)
* Where: TA's choice

* How to sign up for a code review slot
* Link: https://www.cs.cmu.edu/~110/hw/hw2-code-review.htm|
* Important: sign-ups for each TA slot close 5pm Friday

* Also important: don't be late! If you are more than 3 minutes late to your meeting, you will not
get credit on HwW3.

* If something comes up and you need to cancel, notify the TA at least an hour before your timeslot. Do
not do this multiple times.



https://www.cs.cmu.edu/~110/hw/hw2-code-review.html

* For Loops
* While Loops

* Nesting



For Loops



A loop is a control structure that lets you repeat a number of
statements (the body of the loop) a certain number of times.

A for-range loop implements this looping by setting the loop control
variable to a pre-determined set of numbers. The numbers are
generated by the range expression.

We usually use for loops when we know exactly how many times we
need to loop.



For Loop Structure

Recall that the basic structure of a for loop is:

for variableName in range(start, end, step):
LoopBody

Here's a simple example:

for num in range(1l, 10): # step defaults to 1
print(num)



Example: Code Reading

Consider the following code snippet:

count = 0
for x in range(1l, 101):
if isPrime(x):
print(x)
count = count + 1
print("Total:", count)

Ic}‘vge assume that 1sPrime has been written and works correctly, what does this
oF



For Loops over Strings

A common pattern is to loop over each character of a string and check a property
or use the character in a computation.

Here's an example:

def allA(s):

result = ""
for 1 in range(len(s)):
if s[i] == "a":

result = result + s[i]
return result

What will this function return if called on the string "banana™?



Activity: findMatches

You do: Write findMatches(sl, s2), which takes two same-length strings and

returns True if they ever have the same character at the same index, and False
otherwise.

Examples:
findMatches("apple", "guava") returns False.
findMatches("apple", "grape") returns True, because the es match.

10



While Loops



For-range loops are useful for a majority of cases, but there are some
situations where we can't set up a loop control variable in a
straightforward way.

While loops are useful for these more complex cases. They allow us
to manage the loop control variable directly instead of having the for

loop manage it for us.



While Loop Structure

Recall that the basic structure of a while loop is:

while condition:
LoopBody

This is much simpler than a for loop, but also means we'll need to set up a variable
before the loop and update it inside the loop. For example:

num = 1

while num < 10:
print(num)
num = num + 1

14



Complete the function below named printPowers0Of2 that takes a parameter x
and prints the powers of 2 up to x inclusive. For example:

printPowersOf2(7) prints:

>>> printPowers0f2(7)

1
2
4

and printPowers0f2(16) prints:

>>> printPowers0f2(16)

1
2
4
8
16

def printPowersOf2(x):
power =

while

15



Example: Code Writing

Let'st;/vrite a function that displays all the Fibonacci numbers up to and including a given
number n.

def fibUpToN(n):

priorl = © Note that current is our loop
prior2 = 1 control variable. It starts as the
print(priorl) first Fib number we can make
print(prior2) out of two others, is set to the
current = priorl + prior2 next Fib number in each loop,
while current <= n: and we check if it's gotten too
print(current) big in each condition.

priorl = prior2
prior2 = current
current = priorl + prior2



Activity: Mystery Code

You do: trace the given code. What does it do?
Hint: consider what happens when we call mystery("lets go tartans”,

def mystery(s, c):
i = s.index(c)
while 1 < len(s):
s = s[:1] + s[i+1:]
if ¢ in s:
i = s.index(c)
else:
i = len(s)
return s

N

17



Nesting



Nesting is the process of indenting control structures so that they
occur inside other control structures. It is used to manipulate the
control flow of a program to produce certain intended effects.

So far, we've learned about several control structures: function
definitions, conditionals, while loops, and for loops. All of these
structures have bodies, and each can be indented so it occurs inside
the body of another structure.



Though any nesting configuration you can think of is possible, some
arrangements are more common than others.

Functions — we usually write function definitions at the top level of a program
and nest conditionals/loops inside them when they're needed. When we return

in a nested conditional/loop, we exit that structure and the whole function
immediately.

def hasVowels(s): Note how the loop is indented inside the
for i in range(len(s)): function, and its body is indented again.
if s[i] in "aeiou":
return True
return False

If the line return True is reached, the
function will exit immediately without
finishing the loop.

20



Common Nested Structures - Functions

It’s also common to include a function call inside the definition of another function.
You do: what will this print?

def foo(a, b):
y =a+b
print("y in foo:", y)
return y + 3

def bar(x):
y =x + 1
print("y in bar:", y)

return foo(x, y)

print(bar(4))

21



Common Nested Structures — Loop-Conditionals

Loop-Conditional — very often we nest a conditional inside a loop to check a certain
property for every element that is iterated over.

While it's possible to pair an else with the nested if, it's only used if there's a clear
alternative action. It's okay to do nothing on iterations that don't meet the requirement!

def countVowels(s):

result = © We don't need to update
for i in range(len(s)): result if the letter isn't a
if s[i] in "aeiou": vowel, so do nothing instead.

result = result + 1
return result

22



Nested Loop — if you need to iterate over multiple dimensions, a nested loop (one
loop nested inside another) will manage the complex iteration. Each loop control
variable manages one dimension.

It's important that the two loop control variables have different names, so that they
can be referred to separately.

The outer loop moves more 'slowly’,
as it only iterates once for each

def coordinates(x, y):
complete working of the inner loop.

for xNum in range(x):
for yNum in range(y):
print("(" + str(xNum) + ", " +
str(yNum) + ")")




	Slide 1: Exam 1 Review
	Slide 2: Announcements
	Slide 3: Announcements – Code Reviews
	Slide 4: Review Topics
	Slide 5: For Loops
	Slide 6: For Loops
	Slide 7: For Loop Structure
	Slide 8: Example: Code Reading
	Slide 9: For Loops over Strings
	Slide 10: Activity: findMatches
	Slide 12: While Loops
	Slide 13: While Loops
	Slide 14: While Loop Structure
	Slide 15: Example: Quizlet3
	Slide 16: Example: Code Writing
	Slide 17: Activity: Mystery Code
	Slide 18: Nesting
	Slide 19: Nesting Changes a Program's Control Flow
	Slide 20: Common Nested Structures - Functions
	Slide 21: Common Nested Structures - Functions
	Slide 22: Common Nested Structures – Loop-Conditionals
	Slide 23: Common Nested Structures – Nested Loop

