
Recursion II &
Search Algorithms

15-110 – Friday 02/14

Announcements

• Check3 due Monday at noon

• TA-led Exam1 Review Session: Saturday 02/15 3pm in NSH 3305

• Reminder: when attending remote TA office hours (5-7pm every day),
include a Zoom link with your question

2

Quizlet2 Distribution

• Quizlet2 median was lower than expected

• Make sure you practice code reading in addition to code writing

3

Learning Objectives

• Trace over recursive functions that use multiple recursive calls with
Towers of Hanoi

• Recognize linear search on lists and in recursive contexts

• Use binary search when reading and writing code to search for items
in sorted lists

4

Multiple Recursive Calls

5

Multiple Recursive Calls

So far, we've used just one recursive call to build up a recursive answer.

The real conceptual power of recursion happens when we need more
than one recursive call!

Example: Fibonacci numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, etc.

6

images from
Wikipedia

8 13 21

Code for Fibonacci Numbers

The Fibonacci number pattern goes as follows:

F(0) = 0
F(1) = 1
F(n) = F(n-1) + F(n-2), n > 1

def fib(n):
 if n == 0 or n == 1:
 return n
 else:
 return fib(n-1) + fib(n-2)

7

Two recursive calls!

Fibonacci Recursive Call Tree

8

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

fib(0)

fib(1) fib(0)fib(1)

fib(4)

fib(1)

fib(2)

fib(3) fib(2)

3

1 0

1 1

2

1 0

1

Fibonacci Recursive Call Tree

9

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

Another Example: Towers of Hanoi

Legend has it that long ago at a temple far away, a priest was led to a courtyard with 64
discs stacked in size order on a sacred platform.

The priest needed to move all 64 discs from the sacred platform to a sacred stage, but
there was only one other place (let's say a sacred table) on which they could temporarily
place the discs.

The priest could move only one disc at a time, because they're heavy. And they could not
put a larger disc on top of a smaller disc at any time, because the discs were fragile.

According to the legend, the world would end when the priest finished their work.

How long will this task take?
10Try it yourself: https://www.mathsisfun.com/games/towerofhanoi.html

https://www.mathsisfun.com/games/towerofhanoi.html

Solving Hanoi – Use Recursion!

It's difficult to think of an iterative strategy
to solve the Towers of Hanoi problem.
Thinking recursively makes the task easier.

The base case is when you need to move
one disc. Just move it directly to the end
platform.

Then, given N discs:

1. Delegate moving all but one of the
discs to the temporary platform.

2. Directly move the remaining disc to the
end platform.

3. Delegate moving the all but one pile to
the end platform.

11

Solving Hanoi - Code
Prints instructions to solve Towers of Hanoi
def moveDiscs(start, tmp, end, discs):
 if discs == 1: # 1 disc - move it directly
 print("Move one disc from", start, "to", end)
 else: # 2+ discs – use recursion
 # Move all but the largest to tmp
 moveDiscs(start, end, tmp, discs - 1)

 # Move largest disc to the end
 moveDiscs(start, tmp, end, 1)

 # Move all but the largest to the end
 moveDiscs(tmp, start, end, discs - 1)

moveDiscs("left", "middle", "right", 3)

12

Note that the roles of
the left, middle, right
positions change as we
move discs around. A
peg that is initially
'start' might become
'tmp' later on.

Activity: Towers of Hanoi Steps

Our original question was: how many steps will it take to move 64
discs?

Thinking about 64 discs is hard! Let's rephrase the question to make it
easier to answer.

You do: if we add one disc to a Towers of Hanoi set, how does that
affect the total number of steps that need to be taken?

13

Number of Moves in Towers of Hanoi

Every time we add another disc to the tower, it approximately doubles the
number of moves we make.

It doubles because moving N discs takes moves(N-1) + 1 + moves(N-1) total
moves.

We can approximate the number of moves needed for the 64 discs in the
story with 264. That's 1.84 x 1019 moves!

If we estimate each move takes one second, then that's (1.84 x 1019) /
(60*60*24*365) = 5.85 x 1011 years, or 585 billion years! We're safe for now.

14

Linear Search

15

Searching for Items

Search is one of the most common tasks a computer needs to do. We'll discuss it in
depth this week and will revisit the concept several more times in this unit.

You use search in real life all the time too! Every time you manually look through
papers or other physical documents for information, you conduct a search
algorithm of your own.

16

Implementing Search

Suppose we want to determine whether a list contains a specific value.
We know that the in operator can check this for us, but what
algorithm does in implement?

We'll need to think about this from a computer's perspective...

17

How Computers See Lists

If we ask a computer to check if a value is in a list, it sees the whole list
as a series of not-yet-known values:

In order to determine if the value is one of them, it needs to check
each item in turn.

18

S T E L L A

3 6 7 11 14 16

Analogy: Searching a Stack of Books

This is like looking for a particular
book in a stack of books.

You need to repeatedly check
each book until you find the right
title, or until you've checked them
all.

19

For Loop Search Function

We can use a for loop to implement this approach as code. We call this linear search,
because it searches all items in a linear order.

def linearSearch(lst, target):

 for i in range(len(lst)):

 if lst[i] == target:

 return True

 return False

Note that we can return True as soon as we find the target value, but we can't return
False until we've examined all the values.

You do: If target appears more than once in lst, which value will cause the function
to return?

20

Sidebar: Check-Any and Check-All Patterns

Search follows a common pattern for functions that use a loop to return a
Boolean.

A check-any pattern returns True if any of the items in the list meet a
condition, and False otherwise.

A check-all pattern returns True if all of the items in the list meet a
condition, and False otherwise.

21

def checkAny(lst, target):
 for i in range(len(lst)):
 if lst[i] == target:
 return True
 return False

def checkAll(lst, target):
 for i in range(len(lst)):
 if lst[i] != target:
 return False
 return True

Recursive Linear Search Algorithm

Let's implement linear search recursively, just to practice.

What's the base case for linear search?

 Answer: an empty list. The item can't possibly be in an empty list, so the result is False.

 Also: a list where the first element is what we're searching for, so the result is True.

How do we make the problem smaller?

 Answer: call the linear search on all but the first element of the list.

How do we combine the solutions?

 Answer: no combination necessary. The recursive call returns whether the item occurs in the

 rest of the list; just return that result unmodified.
22

Recursive Linear Search Code

def recursiveLinearSearch(lst, target):

 if lst == []:

 return False

 elif lst[0] == target:

 return True

 else:

 return recursiveLinearSearch(lst[1:], target)

print(recursiveLinearSearch(["dog", "cat", "rabbit", "mouse"], "rabbit"))

print(recursiveLinearSearch(["dog", "cat", "rabbit", "mouse"], "horse"))

23

Alternative to Linear Search

Linear Search is a nice,
straightforward approach to
searching a set of items. But that
doesn't mean it's the only way to
search.

Assume you want to search a
dictionary to find the definition of
a word you just read. Would you
use linear search, or a different
algorithm?

24

Can we take advantage of
dictionaries being sorted?

Binary Search

25

Binary Search Divides the List Repeatedly

In Linear Search, we start at the beginning of a list and check each
element in order. So if we search for 98 and do one comparison...

In Binary Search on a sorted list, we'll start at the middle of the list and
eliminate half the list based on the comparison we do. When we
search for 98 again...

26

2 5 10 20 42 56 67 76 89 95

Start here

2 5 10 20 42 56 67 76 89 95

Start here

2 5 10 20 42 56 67 76 89 95

2 5 10 20 42 56 67 76 89 952 5 10 20 42 56 67 76 89 95

Many more #s have been eliminated!

Analogy: Searching in a Library

If you're looking for a particular book
in a library, you don't have to check
every single book!

You can navigate to the right location
because the books are sorted and
you know your book's author
already.

You can use existing information to
speed up your algorithm!

27

Algorithm for Binary Search

Algorithm for Binary Search:

1. Find the middle element of the list.

2. Compare the middle element to the target.

a) If they're equal – you're done!

b) If the target is smaller – recursively search to the left of the
middle.

c) If the target is bigger – recursively search to the right of the
middle.

28

What if there are an even
number of elements? We'll
break ties to the right.

Example 1: Search for 73

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Found: return True

Example 2: Search for 42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Not found: return False

Activity: Trace Binary Search

You do: determine the correct trace for the following call to binary search. Which numbers
are visited?

binarySearch([2, 7, 11, 18, 19, 32, 45, 63, 84, 95, 97], 95)

31

Base Case and Recursive Case of Binary Search

What are the base cases for binary search?

 Answer: an empty list. The target can't possibly be in an empty list, so the result is False.

 Also: a list where the target is the middle element. Then we can stop searching and

 immediately return True.

How do we make the problem smaller?

 Answer: get rid of the half of the list we know the target isn't in (which half?).

How do we combine the solutions?

 Answer: no need to combine anything. Simply return the result of the recursive function call.

32

Binary Search in Code

Now we just need to translate the algorithm to Python.

def binarySearch(lst, target):

 if ____ # base case

 return _____

 else:

 # Find the middle element of the list.

 # Compare middle element to the target.

 # If they're equal – you're done!

 # If the target is smaller, recursively search

 # to the left of the middle.

 # If the target is bigger, recursively search

 # to the right of the middle.
33

Binary Search in Code – Base Case

The first base case is the empty list, and return False

def binarySearch(lst, target):

 if lst == []:

 return False

 else:

 # Find the middle element of the list.

 # Compare middle element to the target.

 # If they're equal – you're done!

 # If the target is smaller, recursively search

 # to the left of the middle.

 # If the target is bigger, recursively search

 # to the right of the middle.
34

Binary Search – Middle Element

To get the middle element, use indexing with half the length of the list.

def binarySearch(lst, target):

 if lst == []:

 return False

 else:

 midIndex = len(lst) // 2

 # Compare middle element to the target.

 # If they're equal – you're done!

 # If the target is smaller, recursively search

 # to the left of the middle.

 # If the target is bigger, recursively search

 # to the right of the middle.

35

Use integer division in case
the list has an odd length

Binary Search – Base Case

The second base case occurs when we find the target. Return True.

def binarySearch(lst, target):

 if lst == []:

 return False

 else:

 midIndex = len(lst) // 2

 if lst[midIndex] == target:

 return True

 # If the target is smaller, recursively search

 # to the left of the middle.

 # If the target is bigger, recursively search

 # to the right of the middle.

36

Binary Search – Comparison

Use an if/elif/else statement to decide which side to use for the smaller problem.

def binarySearch(lst, target):

 if lst == []:

 return False

 else:

 midIndex = len(lst) // 2

 if lst[midIndex] == target:

 return True

 elif target < lst[midIndex]:

 ________ # recursively search to the left of the middle

 else: # lst[midIndex] < target

 ________ # recursively search to the right of the middle

37

Binary Search – Recursive Calls

Use slicing to make the recursive call and return the result immediately.

def binarySearch(lst, target):

 if lst == []:

 return False

 else:

 midIndex = len(lst) // 2

 if lst[midIndex] == target:

 return True

 elif target < lst[midIndex]:

 return binarySearch(lst[:midIndex], target)

 else: # lst[midIndex] < target

 return binarySearch(lst[midIndex+1:], target)

38

Linear Search vs. Binary Search

Why should we go through the effort of writing this more-complicated
search method?

Answer: efficiency. Binary search is vastly more efficient than linear
search, as it performs a lot fewer comparisons to find the same item (as
long as the list is already sorted).

This makes sense intuitively, but we don't yet have a way to prove that
binary search is more efficient. We'll introduce a way to do this soon.

39

Learning Objectives

• Trace over recursive functions that use multiple recursive calls with
Towers of Hanoi

• Recognize linear search on lists and in recursive contexts

• Use binary search when reading and writing code to search for items
in sorted lists

40

	Slide 1: Recursion II & Search Algorithms
	Slide 2: Announcements
	Slide 3: Quizlet2 Distribution
	Slide 4: Learning Objectives
	Slide 5: Multiple Recursive Calls
	Slide 6: Multiple Recursive Calls
	Slide 7: Code for Fibonacci Numbers
	Slide 8: Fibonacci Recursive Call Tree
	Slide 9: Fibonacci Recursive Call Tree
	Slide 10: Another Example: Towers of Hanoi
	Slide 11: Solving Hanoi – Use Recursion!
	Slide 12: Solving Hanoi - Code
	Slide 13: Activity: Towers of Hanoi Steps
	Slide 14: Number of Moves in Towers of Hanoi
	Slide 15: Linear Search
	Slide 16: Searching for Items
	Slide 17: Implementing Search
	Slide 18: How Computers See Lists
	Slide 19: Analogy: Searching a Stack of Books
	Slide 20: For Loop Search Function
	Slide 21: Sidebar: Check-Any and Check-All Patterns
	Slide 22: Recursive Linear Search Algorithm
	Slide 23: Recursive Linear Search Code
	Slide 24: Alternative to Linear Search
	Slide 25: Binary Search
	Slide 26: Binary Search Divides the List Repeatedly
	Slide 27: Analogy: Searching in a Library
	Slide 28: Algorithm for Binary Search
	Slide 29: Example 1: Search for 73
	Slide 30: Example 2: Search for 42
	Slide 31: Activity: Trace Binary Search
	Slide 32: Base Case and Recursive Case of Binary Search
	Slide 33: Binary Search in Code
	Slide 34: Binary Search in Code – Base Case
	Slide 35: Binary Search – Middle Element
	Slide 36: Binary Search – Base Case
	Slide 37: Binary Search – Comparison
	Slide 38: Binary Search – Recursive Calls
	Slide 39: Linear Search vs. Binary Search
	Slide 40: Learning Objectives

