
Machine Learning – Testing
and Artificial Intelligence

15-110 – Monday 04/14

Announcements

• Check6-1 grades released
• Make sure to view your feedback on the programming part especially! You'll

want to fix errors now so that they don't impact your work on Check6-2 and
Hw6

• Check6-1 Revisions due Wednesday at noon

• Check6-2 due Friday at noon
• Tutorial: uncomment your test cases at the bottom of the starter file

2

Announcements

• Next lecture (Wednesday 04/16) is a Free Day
• No quizlet

• No exercise

• No lecture

• Optional: come to lecture to work on your project with help from the
instructor

3

Learning Goals

• Describe how training, validation, and testing are used to build a
model and measure its performance

• Recognize how AIs attempt to achieve goals by using a perception,
reason, and action cycle

• Build game trees to represent the possible moves of a game

• Use the minimax algorithm to determine an AI's best next move in a
game

4

From Training to Testing

Once we've trained a model using machine learning, we may want to
evaluate that model to see how well it actually works.

We can do this by testing the model using the test data held in reserve.

5

Testing Machine Learning Models

6

Training Data, Validation Data, Testing Data

Once we've trained a model, we can use that model to make
predictions about data. That means we don't want the model to only
work on the data we provided originally - we want it to work on future
data too.

We already separated our data into two sets: training data vs. testing
data. When building algorithms professionally, you often want to create
a third data set as well: the validation data set. This data set is used to
help make the training work as well as possible before the final test is
done.

7

Too Much Data Can Cause Overfitting

The training data is normally composed of the majority (maybe 70%) of the available
dataset. This data is run through the machine learning algorithm to produce the model.
The more training data there is, the more accurate the algorithm's model becomes.

This can go wrong if the algorithm over-optimizes the model. For example, it might identify
a pattern that only exists within the training data, not in the general population – the
pattern might just be noise. This is called overfitting. Overfitting can result in a model
performing very well on training data, but poorly on test data.

8

Validation Data Identifies Overfitting

To detect and remove parameters in the model that cause overfitting, you can use
validation data. This is a subset of the data (maybe 15%) that is not used when
training the model. Instead, it will be used to validate the model during training.

The programmer repeatedly evaluates the model produced by the algorithm on the
validation data to see how accurate it is. They can then modify certain parameters
that are used by the algorithm to see which combination produces a model that
works well on the training data and the validation data.

This is similar to how a teacher may provide students a set of practice problems to
learn on, then provide a practice quiz with different problems where the students
can test their knowledge.

9

Testing Data Provides Final Results

When the programmer thinks they've achieved an optimal model, the
testing data is used to determine how accurate that model actually is. This is
a portion of the data (maybe 15%) that was set aside at the beginning and
never used during the training or validation process.

Unlike the validation data, which is evaluated multiple times, the model is
run on the test data only once. We measure how close the predicted results
are to the actual results. That score is the accuracy of the model.

You cannot train on your testing data if you want a fair test of the model!!!

10

Example: Bad Training Process

What happens if we use our validation and
test data to train as well?

The algorithm will get the opportunity to
observe patterns in the additional data. It
will optimize the model to include those
patterns, even through validation.

When the model is tested, it will of course
be accurate because the model was
optimized to notice the correct patterns.

But if we try to use the model on new,
unlabeled data later on, the patterns may
no longer be valid. We don't know for sure
because all the labeled data was used for
training.

11

modeldata

validation

testing

final
model

new data

???

training

Example: Good Training Process

A better process: split the data into training,
validation, and testing sets.

We'll train on only the training set and
repeatedly test on the validation set. This
should remove some of the overfitting from
the training data.

When we're done, we'll test on the test set
once. That produces our final result. It
might be good, or it might be bad; it
depends on how the model turned out.

However, the new data should have about
the same accuracy as the test data, since
the model never saw the test data before.
There's less uncertainty.

12

modeldata

final
model

new data

train

validate

test

training
validation

or

testing

or

Artificial Intelligence

13

Machine Learning Supports Artificial Intelligence

Now that we have machine learning algorithms, what can we do with
them?

One option is to use them to support artificial intelligence. Let's talk
more about what that means!

14

What is Artificial Intelligence?

Artificial Intelligence (AI) is a branch of computer science that studies
techniques which allow computers to do things that, when humans do them,
are considered evidence of intelligence.

However, it's extremely hard to build a machine with general intelligence-
that is, a machine that can do everything a human can do. We're still far
away from this goal, as it includes many difficult tasks (visual and auditory
perception, language understanding, reasoning, planning, and more).

Most modern AI applications are specialized; they do one specific task, and
they do it very well. We call an AI application trained for a specific task an
agent.

15

Examples of AI Agents

We've built AI agents that can
play games, run robots, and
animate children's drawings.

AI is also used to translate text,
predict what you'll type, and
answer questions on websites.

What do these agents have in
common? Each agent we build
has a specific goal, the thing it is
trying to do.

16

Diagram

Description automatically generated with medium confidence

https://ai.facebook.com/blog/using-ai-to-bring-childrens-drawings-to-life/

Perception, Reason, and Action

17

Perception, Reason, and Action

An AI agent attempts to reach its goal by cycling through three steps:
perceive information, reason about it, then act on it.

This is similar to how humans and animals work! We constantly take in
information from our senses, process it, and decide what to do
(consciously or unconsciously) based on that 'data'.

An agent's main task is to determine a series of actions that can be
taken to accomplish its goal.

18

Perception: What Data Can Be Gathered?

First, the agent needs to perceive information about the state of the
problem.

This can range from data inputted directly by the user to contextual
information about other actions the user has taken. For example, an
autocomplete AI agent might use data both about what the user is currently
typing and about what they've typed before.

Agents that interact with the real world can perceive information through
sensors, pieces of hardware that collect data and send it to the agent.

19

Reason: What Should be Done Next?

Second, the AI agent needs to reason about the data it has collected, to decide
what should be done next to move closer to the goal.

Reasoning uses algorithms, including machine learning algorithms. The agent
often creates a model representation of the world based on the task it needs to
solve and the data it has collected so far. It can then search through all the possible
actions it can take to inform its decision.

A general goal of reasoning is to make decisions quickly, so that tasks can be
accomplished efficiently. You don't want a self-driving car to take long to decide
whether or not to stop!

20

Action: Here's What to Do

Finally, the AI agent needs to act, to produce a change in the state of the
problem. All actions should lead the agent closer to its goal.

Actions don't need to reach the goal immediately, and often can't. As long as
some progress is made, the agent can continue cycling through perceiving,
reasoning, and acting until the goal is reached.

Agents that interface with the real world (robots) use actuators to make
changes. This can be complicated (moving a robot arm) or simple (turning up
the heat on the thermostat).

21

Example: IBM Watson

IBM's AI agent Watson was designed to play (and
win!) the game Jeopardy. Its goal was to answer
Jeopardy problems with a question. How did it
work?

Watson perceived the questions by receiving
them as text, then broke them down into
keywords using natural language processing.

It used that information to search documents in
its database, looking for the most relevant
information. With that information, Watson used
reasoning to determine how confident it was
that the answer it found was correct.

If Watson decided to answer, it would act by
organizing the information into a sentence, then
pressing the buzzer with a robotic 'finger'.

22

Search Supports Artificial Intelligence

In Watson (and many other artificial intelligence applications), the key to
being able to perceive and act quickly lies in fast search algorithms.

Being able to search quickly makes it possible for an AI agent to look through
hundreds of thousands of possible actions to find which action will work
best. This is what makes it possible for Watson to find a correct answer so
quickly, or for a self-driving car to identify when it needs to stop
immediately.

We've discussed many data structures and algorithms to support search
already. We'll now describe two final ideas used by AI agents to support fast
search- game trees and minimax.

23

Game Trees and Minimax

24

Game Trees Represent Possible World States

To search data about possible actions and results quickly, an AI agent
first needs to organize that data in a sensible way. Let's focus on a
simple example: a two-player game between an AI agent and a human.

A game tree is a tree where the nodes are game states and the edges
are actions made by the agent or the opposing player. Game trees let
the agent represent all the possible outcomes of a game.

For example, the game tree for Tic-Tac-Toe looks like this...

25

26

Full board here: https://xkcd.com/832/

https://xkcd.com/832/

Reading a Game Tree

The root of a game tree is the current state of the game. That can be the
start state (as in the previous example), or it can be a game state after some
moves have been made.

The leaves of the tree are the final states of the game, when the AI agent
wins, loses, or ties.

The edges between the root and the first set of children are the possible
moves the agent can make. Then the next set of edges (from the first level of
children to the second) are the moves the opponent can make. These
alternate all the way down the tree.

27

Game Trees are Big

How many possible outcomes are there in a game of Tic-Tac-Toe?

Let's assume that all nine positions are filled. That means the depth of the
tree is 10 (there are nine moves, so we count the root + 9 results of actions).
There are 9 options for the first move, 8 for the second (for each of those
nine states), 7 for the third, etc... that's 9! leaves, which is 362,880.

This number is a bit larger than the real set of possibilities (some games end
early), but it's a good approximation.

How can the agent choose the best set of moves to make out of all these
possible paths?

28

Minimax Optimizes for Score

The minimax
algorithm can be used
to maximize the final
'score' of a game for
an AI agent.

In Tic-Tac-Toe, we'll
say that the score is 1
if the computer wins,
0 if there's a tie, and
-1 if the human wins.

29

X O

X X O

O

X X O

X X O

O

X O

X X O

X O

X O

X X O

O X

O X O

X X O

O X

X O

X X O

O O X

X O

X X O

X O O

O X O

X X O

X O

X X O

X X O

O O

X X O

X X O

O O

-1 -1

X X O

X X O

O O X

1
O X O

X X O

X O X

0
O X O

X X O

X O X

X X O

X X O

O O X

10

Scoring Game States

How do we score the
intermediate states? Look
at the scores of the
state's children.

If the next move is made
by the agent, take the
maximum of the scores.

If it's made by the
opponent, take the
minimum.

Start from the leaves and
build up to the root.

30

X O

X X O

O

X X O

X X O

O

X O

X X O

X O

X O

X X O

O X

O X O

X X O

O X

X O

X X O

O O X

X O

X X O

X O O

O X O

X X O

X O

X X O

X X O

O O

X X O

X X O

O O

-1 -1

X X O

X X O

O O X

1
O X O

X X O

X O X

0
O X O

X X O

X O X

X X O

X X O

O O X

10

1

AI max

User min

AI max

0 0 1

-1 -1 0

0

Activity: Apply Minimax

You do: given the
tree to the right,
apply minimax to
find the score of the
root node.

Note that the first
action is taken by the
AI agent.

31

O X

X X O

O

X O X

X X O

O

O X

X X O

O X

O X

X X O

O X

O O X

X X O

O X

O X

X X O

O O X

O X

X X O

O X O

O O X

X X O

O X

X O X

X X O

O O

X O X

X X O

O O

X O X

X X O

O O X

X O X

X X O

O X O

O O X

X X O

O X X

X O X

X X O

O X O

O O X

X X O

O X X

X O X

X X O

O O X

1 10 0 0 0

Minimax Algorithm

Need to use a general tree- "children" instead of "left" and "right"
def minimax(tree, isMyTurn):
 if len(tree["children"]) == 0:
 return score(tree["contents"]) # base case: score of the leaf
 else:
 results = [] # recursive case: get scores of all children
 for child in tree["children"]:
 # switch whose turn it will be for the children
 results.append(minimax(child, not isMyTurn))
 if isMyTurn == True:
 return max(results) # my turn? maximize!
 else:
 return min(results) # opponent's turn? minimize!

def score(state):
 ??? # this depends on the agent's goal

32

Complexity of Minimax

How efficient is minimax? It needs to visit every node of the tree, so if
the tree has n nodes, it runs in O(n) time.

However, complete game trees are huge; more complex games have
much larger trees. For example, in Chess there's an average of 35
possible next moves per turn, with an average of 100 turns per game.
That means there are 35100 possible states to check – way too many!!

In general, AI agents will try to constrain the size of a game tree by
using heuristics, as we discussed in the Tractability lecture.

33

Heuristics in Minimax

The main flaw in minimax is the size of
the game tree. We can address this by
having the computer move down a set
number of levels in the game tree, then
stop, even if it has not reached an end
state.

For states that are not leaves, use a
heuristic to score the state based on the
current setup of the game. Then the
agent can use minimax to find the next-
best move based on the heuristic scores.

If the heuristic is well-designed, its score
should approximate the real result and
minimax should still produce a good
result!

34

X O

X

O

X X O

X

O

X O

X X

O

X O

X X

O

X O

X

X O

X O

X

O X

O X O

X X

O

X O

X X O

O

X O

X X

O O

X O

X X

O O

O X O

X

X O

X O

O X

X O

X O

X O

X O

X O

X

X O O

-.33 0 0 0 0 0 .33 .33

Heuristic:
(number of possible X wins - number of possible O wins)

total number of non-tie results

stop here

...

Sidebar: Game AIs

Algorithms like minimax and the use
of heuristics have made it possible for
AI agents to beat world champions at
games like Chess, Go, and Poker.

Why did it take 19 years to get from
Chess to Go? Go has many more next
moves than Chess, so it needed more
advanced algorithms (including Monte
Carlo randomization and machine
learning!).

These AI agents will keep improving as
computers grow more powerful and
we design better algorithms.

35

DeepBlue beat chess grandmaster Garry Kasparov in 1997

AlphaGo beat 9-dan ranked Go champion Lee Sedol in 2016

Learning Goals

• Describe how training, validation, and testing are used to build a
model and measure its performance

• Recognize how AIs attempt to achieve goals by using a perception,
reason, and action cycle

• Build game trees to represent the possible moves of a game

• Use the minimax algorithm to determine an AI's best next move in a
game

36

	Slide 1: Machine Learning – Testing and Artificial Intelligence
	Slide 2: Announcements
	Slide 3: Announcements
	Slide 4: Learning Goals
	Slide 5: From Training to Testing
	Slide 6: Testing Machine Learning Models
	Slide 7: Training Data, Validation Data, Testing Data
	Slide 8: Too Much Data Can Cause Overfitting
	Slide 9: Validation Data Identifies Overfitting
	Slide 10: Testing Data Provides Final Results
	Slide 11: Example: Bad Training Process
	Slide 12: Example: Good Training Process
	Slide 13: Artificial Intelligence
	Slide 14: Machine Learning Supports Artificial Intelligence
	Slide 15: What is Artificial Intelligence?
	Slide 16: Examples of AI Agents
	Slide 17: Perception, Reason, and Action
	Slide 18: Perception, Reason, and Action
	Slide 19: Perception: What Data Can Be Gathered?
	Slide 20: Reason: What Should be Done Next?
	Slide 21: Action: Here's What to Do
	Slide 22: Example: IBM Watson
	Slide 23: Search Supports Artificial Intelligence
	Slide 24: Game Trees and Minimax
	Slide 25: Game Trees Represent Possible World States
	Slide 26
	Slide 27: Reading a Game Tree
	Slide 28: Game Trees are Big
	Slide 29: Minimax Optimizes for Score
	Slide 30: Scoring Game States
	Slide 31: Activity: Apply Minimax
	Slide 32: Minimax Algorithm
	Slide 33: Complexity of Minimax
	Slide 34: Heuristics in Minimax
	Slide 35: Sidebar: Game AIs
	Slide 36: Learning Goals

