Simulation —
Experiments and Trials

15-110 — Friday 04/11

* Check6-1 was due today at noon
* We'll grade and release feedback by Sunday

 Hw6 Revision Policy: each of the Hw6 assignments (Check6-1,
Check6-2, Hw6) has a unique revision deadline
e Check6-1: Wednesday 04/16
e Check6-2: Wednesday 04/23
 Hw6: No Revision Period [the deadline is already the last day of classes]

* Update a model after events (mouse-based and keyboard-based)
based on rules

e Use Monte Carlo methods to estimate the answer to a question

INnteraction Events

In the previous Simulation lecture, we learned about how to use controllers

that tell the model to change over time. The second kind of controller is one
that captures events.

An event represents a single user interaction with the computer system.
Events come in many forms: keyboard presses, mouse clicks, touchpad
gestures, button presses, touchscreen presses, etc...

When you take an action on your comﬁuter, a signal is sent from the
computer hardware to any programs that are currently running. That signal
has information about the type of the event (key press vs. mouse click), plus
any additional information that might be useful (which key was pressed).

The event controller runs an event loop to capture the signals that the computer
sends out, similar to the time loop discussed in the previous lecture. However,
events occur irregularly, unlike regularly-timed rules.

To implement this event loop, we'll have our simulation system constantly listen for
events. When an event occurs, the controller will catch it and send the event data
on to the correct rule function; that function will tell the view to update. This is

done with a special kind of Tkinter function called bind and is provided in the
starter code.

With Tkinter we can listen for and bind functions to lots of different event types.
We'll care about just two: <Key>, a key press, and <Button-1>, a left mouse click.
There are lots of other Tkinter events we can implement if we want them:

https://web.archive.org/web/20190512164300id /http://infohost.nmt.edu/tcc/hel
p/pubs/tkinter/web/event-types.html

https://web.archive.org/web/20190512164300id_/http:/infohost.nmt.edu/tcc/help/pubs/tkinter/web/event-types.html
https://web.archive.org/web/20190512164300id_/http:/infohost.nmt.edu/tcc/help/pubs/tkinter/web/event-types.html

To deal with Key and Mouse events, we'll introduce two new rule functions
to our simulation framework:

 keyPressed(data, event)
* mousePressed(data, event)

Each of these takes data (our components data structure) and event, an
event object that contains the information about the event.

These work like runRules(data, call) —we update data, then the
controller tells the view to refresh immediately afterwards. This lets us make

visible changes to the model.

In keyPressed, the event parameter contains two values we can access
with a . (like string or list methods):

* event.charis a string that holds the character pressed

* event.keysymis a string that holds the 'name’ of the character, for
characters we can't show in a string (e.g., Enter or BackSpace)

If we want to draw the last-pressed character in the middle of the screen, for
example, we would store that character in data, then draw it in makeView:

def keyPressed(data, event):
data["text"] = event.char

Example Key Event: Type Colors

def makeModel(data):
data["color"] = "red"
data["tmp"] = "" # need to hold partial strings

def makeView(data, canvas):
canvas.create oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,
fill=data["color"])

def keyPressed(data, event):
build up a color string one char at a time until user presses Return

if event.keysym I= "Return":
data["tmp"] += event.char
else:

move the color into data["color"]
data["color"] = data["tmp"]
data["tmp"] = ""

In mousePressed, the event parameter holds the (x, y) pixel location
where the user clicked on the canvas.

e event.xisthe x location

* event.y is they location

If we want to move a circle around the canvas to be centered wherever
we click, we'd need to store the center location and draw the circle
based on the model location in makeView:

def mousePressed(data, event):
data["cx" event.x
data["cy"] event.y

10

Example Mouse Event: Click to Change Color

def makeModel(data):
data["color"] = "red"

def makeView(data, canvas):
canvas.create oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,
fill=data["color"])

def mousePressed(data, event):
import random
newColor = random.choice(["red", "orange", "yellow",
"green", "blue", "purple"])
Check if the user clicked inside the circle
Is the distance between the center and the click less than the radius?
if ((event.x - 200)**2 + (event.y - 200)**2)**Q.5 <= 50:
data["color"] = newColor

11

Monte Carlo Methods

Most simulations use randomness in some way; otherwise, every run
of the simulation will produce the same result.

Using randomness in a simulation means that the same simulation
might have multiple different outcomes on the same input model. A
single run of a simulation is not a good estimate of the true average

outcome.

To find the truth in the randomness, we need to use probability!

The Law of Large Numbers states that if you perform an experiment multiple
times, the average of the results will approach the expected value of the
true answer as the number of trials grows.

This law works for simulation as well! We can calculate the expected value of
an event by simulating it a large number of times and averaging the results.

We call programs that repeat simulations this way Monte Carlo methods,
after the famous gambling district in the French Riviera. We're gambling with
the accuracy of the answer.

Monte Carlo Method Structure

If we put our simulation code in the function runTrial and want to find the
odds that a simulation 'succeeds’, a Monte Carlo method might take the

following format:

def getExpectedValue(numTrials):

count = 0
for trial in range(numTrials):
result = runTrial() # run a new simulation

if result == True: # check the result

count = count + 1
return count / numTrials # return the probability

15

Monte Carlo Example

Every year, SCS holds the Random Distance Race. The length of this race is determined by
rolling two dice. What is the expected number of laps a runner will need to complete?

import random

def runTrial():
return random.randint(1l, 6) + random.randint(1, 6)

def getExpectedValue(numTrials):
lapCount = ©
for trial in range(numTrials):
lapCount += runTrial()
return lapCount / numTrials

16

You do: what are the odds that a runner in the Random Distance Race
will need to run 10 or more laps?

Write the code to run the trial. You can modify the code from the
previous slide.

Testing Simulations

Once we've programmed a robust simulation, we can change the
starting state to see how it changes the simulation. This is especially
useful when we want to predict certain things about the world.

We can check predictions more quickly by making timeRate smaller
(calling the simulation more often).

We've included on the course website a pre-written simulation that
models a zombie apocalypse. Let's use this as an example of how to
make predictions by using Monte Carlo methods with simulations.

This simulation models the world as a grid. Each cell of
the grid can be empty (grey} or can have a human
(green) or a zombie (purple) on it.

At every time step, the zombies move in a random
direction while the humans stay still (they're hiding). If a
zombie is bordering a human, there is an infection rate
(a probability) for whether the human will turn into a
zombie or not. The simulation prints the number of days
that full infection took when all entities are zombies.

Here are a few questions we can ask: how long will it
take for the whole world to become zombies...

* |n our current code?
e |f we start with more or fewer humans?
* If we start with a higher/lower infection rate?

7 tk

I.Ill

20

If we want to explore the simulation, we can run it with the visualization on.

If we just want to find the average results, we can call the makeModel and
runRules functions from a new function where the time loop becomes a
while loop. Have that function return the number of days it takes to zombify

all the humans.

When we run this function with getExpectedValues we find the expected
amount of time left for the human race. Monte Carlo solves the problem!

Calculating Outcomes Code

def runTrial():

data = { }

makeModel (data) # initial setup

daysPassed = 0

while not allZombies(data["creatures"]): # while loop instead of time loop
runRules(data, daysPassed)
daysPassed += 1

return daysPassed

def getExpectedValue(numTrials):
dayCount = ©
for trial in range(numTrials):
dayCount += runTrial()
return dayCount / numTrials

print(getExpectedValue(100))

22

* Update a model after events (mouse-based and keyboard-based)
based on rules

e Use Monte Carlo methods to estimate the answer to a question

	Slide 1: Simulation – Experiments and Trials
	Slide 2: Announcements
	Slide 3: Learning Goals
	Slide 4: Interaction Events
	Slide 5: Interaction Events
	Slide 6: Sidebar: Controller Functions – Event Loop
	Slide 7: Event Rules
	Slide 8: keyPressed Events
	Slide 9: Example Key Event: Type Colors
	Slide 10: mousePressed Events
	Slide 11: Example Mouse Event: Click to Change Color
	Slide 12: Monte Carlo Methods
	Slide 13: Randomness in Simulation
	Slide 14: Law of Large Numbers
	Slide 15: Monte Carlo Method Structure
	Slide 16: Monte Carlo Example
	Slide 17: Activity: Monte Carlo Methods
	Slide 18: Testing Simulations
	Slide 19: Using Simulations
	Slide 20: Zombie Simulation
	Slide 21: Calculating Outcomes
	Slide 22: Calculating Outcomes Code
	Slide 23: Learning Goals

