
External Modules
15-110 – Bonus Slides

Module Index

Math: NumPy, SciPy

Data Analysis: Matplotlib, pandas

Machine Learning: scikit-learn

Computer Vision: OpenCV

Natural Language Processing: nltk

Websites: Django, Flask

Webscraping: Beautiful Soup

Images: Pillow

Audio: Pydub

Game Design: Pygame

3D Graphics: VPython

2

Data Analysis External Modules

3

SciPy Collection

SciPy is a group of modules that support advanced mathematical and
scientific operations. It can handle large calculations that might take the
default Python operations too long to compute.

The group includes NumPy (which focuses on core math), SciPy (math and
science functions), pandas (data analysis), and Matplotlib (plotting of charts
and graphs). These can be used separately or as a group. Each need to be
installed separately, but can be installed directly with pip install name

Website: https://www.scipy.org/

4

https://www.scipy.org/

NumPy

NumPy's main purpose is to support mathematical operations in
Python.

That may not seem necessary at first, since Python already has support
for many math operations in the built-in libraries, but NumPy has the
advantage of being very efficient; that makes it a great library to use on
large datasets.

5

NumPy Arrays

NumPy mostly works as you would
expect for a Python library. Its main
difference is that it organizes numbers
in lists differently from regular Python.

NumPy creates special array objects of
varying dimensions (like one- and two-
dimensional lists); these arrays can
represent vectors or matrices in
mathematical calculation.

import numpy as np

np.array([10, 20, 30, 40])

[10 20 30 40]

np.array([[1, 2, 3], [4, 5, 6],

 [7, 8, 9]])

[[1 2 3]

[4 5 6]

[7 8 9]]

6

NumPy Arrays – Operations

NumPy supports a lot more built-in
operations on arrays that Python
does on lists. For example, you can
directly add a number to an array;
that will add the number to each of
the numbers inside the array.

You can also directly subtract one
array from another; that will take the
difference of the numbers at
matching indexes.

import numpy as np

a = np.array([10, 20, 30, 40])

b = np.array([5, 6, 7, 8])

a + 2 # [12 22 32 42]

a - b # [5 14 23 32]

7

NumPy Arrays - Indexing

In addition to all of this, NumPy
also supports more advanced
indexing into multi-dimensional
arrays.

For example, if you make a 2D
array, you can index into it with
row comma col instead of needing
to use two indexes. This can be
quite handy!

import numpy as np

c = np.array([[1, 2, 3],

 [4, 5, 6], [7, 8, 9]])

c[1, 2] # 6

8

NumPy Functions

NumPy does have its own set of mathematical functions- for example,
it can generate random numbers.

x = numpy.random.randint(1, 10)

random number in [1, 10]

However, it's mostly used as a support library for other libraries that
want to use more efficient mathematical operations when doing
statistics, or science, or engineering tasks.

9

SciPy

• Next, let's look at the SciPy library. SciPy provides functions for
scientific computation, mostly relying on NumPy for lower-level
calculations.

• The SciPy functions tend to be a bit higher-level so that you can run
whole processes automatically instead of scripting them yourself.

• SciPy also splits its functions into different sub-libraries. For example,
there's a sub-library called linalg for linear algebra, one called signal
for signal processing, and one called stats for statistics.

10

SciPy Functions

SciPy isn't too hard to use when you have a
specific purpose in mind. Just find the sub-
library that corresponds to what you want
to do, set up your data properly, and run
the function.

For example, if you want to find the inverse
of a matrix (where your matrix times its
inverse equals the identity matrix), there's a
function for that!

Just import the linalg sub-library, set up
your matrix as a NumPy two-dimensional
array, then run linalg.inv.

import numpy as np

from scipy import linalg

a = np.array([[1, 2], [3, 4]])

linalg.inv(a))

[[-2. 1.]

[1.5 -0.5]]

11

Matplotlib

The matplotlib library can be used to generate interesting visualizations
in Python. This is great for data analysis!

The way that specific types of charts and graphs are set up can vary a
lot, but there are some core components to every chart that are
consistent.

12

Draw Visualizations on the Plot

Matplotlib visualizations can be broken down into
several components. We'll mainly care about one:
the plot (called plt). This is like Tkinter's canvas,
except that we'll draw visualizations on it instead
of shapes.

We can construct an (almost) empty plot with the
following code. Note that matplotlib comes with
built-in buttons that let you zoom, move data
around, and save images.

import matplotlib.pyplot as plt

plt.title("Empty")
plt.show()

13

Add Visualizations with Methods

There are lots of built-in methods that
let you construct different types of
visualizations. For example, to make a
scatterplot use
plt.scatter(xValues, yValues).

x = [2, 4, 5, 7, 7, 9]

y = [3, 5, 4, 6, 9, 7]

plt.scatter(x, y)

plt.show()

14

Visualization Methods have Keyword Args

You can customize how a visualization looks by adding
keyword arguments. We used these in Tkinter to
optionally change a shape's color or outline; in Matplotlib
we can use them to add labels, error bars, and more.

For example, we might want to create a bar chart (with
plt.bar) with a unique color for each bar. Use the
keyword argument color to set the colors.

labels = ["A", "B", "C", "D", "E"]

yValues = [10, 40, 36, 46, 21]

colors = ["red", "yellow", "green",

 "blue", "purple"]

plt.bar(labels, yValues, color=colors)

plt.show()

15

Matplotlib Approaches

If you browse the Matplotlib website, you'll see that charts can be drawn with one
of two different approaches - object oriented or procedural.

The object-oriented approach lets you break down the window into objects, then
control each object independently. Charts are drawn by calling methods on
appropriate objects. To learn more about objects, read here:
https://docs.python.org/3/tutorial/classes.html

The procedural approach instead has you call all functions from one central library,
matplotlib.pyplot, which is usually aliased to plt. Charts are drawn by calling
functions to set up all the elements you want.

Either approach is generally fine- just pick one and stick with it.

16

https://docs.python.org/3/tutorial/classes.html

Fig and Ax

Here's a quick thing to know if you're using the object-oriented approach. Every
graph is drawn in a figure, which has some number of axes. A figure is like a
window that pops up on your screen; an axis is a part of that window dedicated to
one specific visualization.

To interact with the figure and axis directly, call plt.subplots to access the two
objects. This function returns two objects, so you should set up two variables to
capture the results. This can be done easily with fig, ax = plt.subplots().

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

17

Pandas

Pandas is specifically built to support data analysis for data in
spreadsheets, or tables. It's great for Excel-style coding.

Pandas mostly works on a kind of data structure called a DataFrame,
which is basically a spreadsheet table.

18

Pandas DataFrames

DataFrames act a bit like 2D lists, except that it's
as easy to access data by column as it is to
access data by row.

You can set up a DataFrame directly from a 2D
list fairly easily, as is shown here. You can also
load a DataFrame directly from a CSV file.

Note that, like in NumPy arrays, the DataFrame
is displayed a little differently- there are no
commas between values, and the row and
column indexes are included directly.

Some properties are familiar, though; for
example, the length of a DataFrame is just the
number of rows.

import pandas as pd

df = pd.DataFrame([[1, 2, 3],

 [4, 5, 6]])

df2 = pd.read_csv("data.csv")

print(df)

0 1 2

0 1 2 3

1 4 5 6

print(len(df)) # 2

19

Pandas DataFrame Columns

Where DataFrames get really
interesting is that you don't
need to refer to columns by
index.

You can give them names
instead, just like you often would
in a spreadsheet with a header!

We can do this by adding a
keyword argument, columns,
with a list of column names.
Column names are also loaded
automatically when a table is
loaded from a CSV.

import pandas as pd

df = pd.DataFrame([["15-110", "Principles of Computing", 10],

 ["15-112", "Fundamentals of Programming and CS", 12],

 ["15-251", "Great Ideas in Theoretical CS", 12]],

 columns=["Course Number", "Course Name", "# Units"])

print(df)

Course Number Course Name # Units

0 15-110 Principles of Computing 10

1 15-112 Fundamentals of Programming and Computer Science 12

2 15-251 Great Ideas in Theoretical Computer Science 12

20

Pandas DataFrame Indexing

Once you have a DataFrame set up,
you can index into it by column with a
normal index operation, just by
providing the column name.

For example, if we index by "Course
Number" in the DataFrame we've
created here, we'll get the values in
that column of the table. Note that
when the values are displayed, they're
paired with their row indexes, and the
column name and type are shown at
the bottom. Handy!

Indexing into a specific row is harder –
use .iloc with the row's position as
an index.

import pandas as pd

df = pd.DataFrame([["15-110", "Principles of Computing", 10],

 ["15-112", "Fundamentals of Programming and CS", 12],

 ["15-251", "Great Ideas in Theoretical CS", 12]],

 columns=["Course Number", "Course Name", "# Units"])

print(df["Course Number"])

0 15-110

1 15-112

2 15-251

Name: Course Number, dtype: object

print(df.iloc[0]["Course Number"]) # Principles of Computing

21

Pandas DataFrame Looping

When you loop over a DataFrame with
a for-iterable loop, you loop over the
columns, not the rows! This is sort of
like how a dictionary maps over keys.

If you want to loop over the rows
instead, use the method
df.iterrows, which produces two
values per iteration – the index of the
row and the row itself. You can index
into a column of a row the same way
you can index into a column for the
whole dataframe.

It's generally better to do work
directly with columns when possible,
though.

import pandas as pd

df = pd.DataFrame([["15-110", "Principles of Computing", 10],

 ["15-112", "Fundamentals of Programming and CS", 12],

 ["15-251", "Great Ideas in Theoretical CS", 12]],

 columns=["Course Number", "Course Name", "# Units"])

for col in df:

 print(col)

Course Number

Course Name

Units

for index, row in df.iterrows():

 print(index, row["Course Name"])

0 Principles of Computing

1 Fundamentals of Programming and CS

2 Great Ideas in Theoretical CS
22

Pandas DataFrame Subsets

If you just want to work with a
subset of the data in a DataFrame,
there are two easy ways to do that.

If you want a particular range of
rows, slicing works on DataFrames
the same way it does on lists!

Or if you want to select a subset of
rows based on a specific property
they share in a given column, use a
Boolean operation to index into
the DataFrame instead of a normal
index. This will evaluate to a
DataFrame containing only the
rows where that operation
evaluated to True.

import pandas as pd

df = pd.DataFrame([["15-110", "Principles of Computing", 10],

 ["15-112", "Fundamentals of Programming and CS", 12],

 ["15-251", "Great Ideas in Theoretical CS", 12]],

 columns=["Course Number", "Course Name", "# Units"])

sub1 = df[:2]

print(sub1) # only rows 0 and 1

Course Number Course Name # Units

0 15-110 Principles of Computing 10

1 15-112 Fundamentals of Programming and CS 12

sub2 = df[df["# Units"] == 12]

print(sub2) # only rows where # Units was 12

Course Number Course Name # Units

1 15-112 Fundamentals of Programming and CS 12

2 15-251 Great Ideas in Theoretical CS 12
23

Pandas Functions

Outside of DataFrames, the
pandas library works about the
way you'd expect. You can call
methods on DataFrames to
analyze the data in them or
modify the table as needed.

For example, if we want to get
the median number of units of
all the courses in the dataset,
we just need to index into the
Units column, then call the
median method on that set of
data values.

import pandas as pd

df = pd.DataFrame([["15-110", "Principles of Computing", 10],

 ["15-112", "Fundamentals of Programming and CS", 12],

 ["15-251", "Great Ideas in Theoretical CS", 12]],

 columns=["Course Number", "Course Name", "# Units"])

print(df["# Units"].median())

12.0

24

Machine Learning External
Modules

25

Machine Learning Overview

Machine learning is the process of algorithmically finding patterns in a
dataset, so that a machine can answer questions about new data or group
similar pieces of data together.

There are many, many different algorithms that have been designed to
support machine learning. Most machine learning libraries implement those
algorithms for you; all you need to do is decide which algorithm is the best fit
for your data

For general machine learning, we'll recommend scikit-learn. For specialized
algorithms, we'll discuss OpenCV and nltk.

26

scikit-learn

scikit-learn is a module that supports a large set of machine
learning algorithms in Python. If you want to dabble in machine
learning or artificial intelligence, this is a good place to start. Note that
you'll still need to provide a starting dataset to get any algorithm to
work.

Website: https://scikit-learn.org/stable/

Install:

pip install scikit-learn

27

https://scikit-learn.org/stable/

Understanding Algorithms

Running algorithms with scikit-learn isn't too hard; you just call methods on your
data to set up a model and then use the model to make predictions or check results
as needed.

The harder part of machine learning is understanding how the algorithms work,
and knowing which algorithm to use for any given task.

There's no shortcut for this; you just have to do a lot of learning to get familiar with
lots of different possible approaches.

We'll cover machine learning in a few weeks, and we'll talk more about how to
choose the proper algorithm there.

28

scikit-learn Demo

Let's just look at one example to see what the general process looks
like.

I've got a grade dataset - five quiz grades and a final exam grade for a
set of 145 students - and I want to cluster the data points, to see which
groups naturally emerge.

I'll use a clustering algorithm for this, and I'll specifically choose to use
K-means clustering.

29

Loading Data from a File

Let's use the built-in csv library to load a spreadsheet into a 2D list
(we'll go over how to do this next week).

import csv

f = open("grades.csv", "r")

reader = csv.reader(f)

data = list(reader)

f.close()

30

Running the Algorithm

Next, we need to create a model based on the data.

We'll run the KMeans algorithm and tell it to create three clusters.
Then we'll fit that model to the dataset. The resulting model is an
object with certain properties.

from sklearn.cluster import KMeans

model = KMeans(n_clusters=3).fit(data)

31

scikit-learn Model Properties

For example, you can check what the average scores of the three clusters
are by looking at the cluster_centers_ property. The first five
numbers are quiz scores, and the last is a final exam score.

model.cluster_centers_

[[89.4271 94.4223 91.5873 95.2281 91.7184 87.7427]

[61.7857 81.7857 48.9285 80.6428 66.4285 63.5]

[87.1 89.7 66.2857 90.6285 90.7142 79.]]

32

scikit-learn Model Properties

How many students are in each cluster? You can check that by looking at the labels_ property. This shows
which cluster label was assigned to each data point. By turning the labels list into a list and running the count
method, you can check how many students are in each group.

model.labels_
[0 2 0 0 0 2 0 2 0 2 0 0 2 2 0 0 0 0 2 2 0 0 0 0 0 0 0 2 2 0 0 2 2 2 1 2 0
0 0 0 2 2 0 0 2 0 0 1 2 0 0 0 2 0 0 0 0 0 1 0 2 0 0 0 0 0 2 0 0 0 0 1 0 2
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 2 0 0 2 2 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 2 0 0 0 0 2 0 0 0 0 2 2 1 0 2 2 0 0 2 0 0 0 0 0 0 0 2 0 0 0]

L = list(model.labels_)
L.count(0) # 103
L.count(1) # 7
L.count(2) # 35

33

scikit-learn Model Functions

Finally, if you want to use this model to put a new data point into one
of the clusters, use the predict method.

Predict takes a list of data points, so put the single data point in
another list. The result is the cluster that the student is assigned to.

student = [60, 70, 75, 80, 85, 87]

model.predict([student]) # [2]

34

OpenCV

The OpenCV library is a good choice if you want to do machine learning
with images. CV in this case stands for computer vision.

You can install it under the name opencv-python, then import it with
the name cv2. Usually this gets aliased to cv.

pip install opencv-python

import cv2 as cv

35

OpenCV Example

OpenCV lets you load images and
recognize features in them, like lines, or
corners, or digits.

For example, let's say I want to detect
edges in an image. First, I can load an
image with imread.

I can check that image with imshow too
if I want to! But I have to set up a line of
code afterwards so that the program
knows to keep the window open and
close it when you press x.

import cv2 as cv

img = cv.imread("dog.jpg")

cv.imshow("Image Window", img)

k = cv.waitKey(0)

36

OpenCV Example

To detect lines in the image, I need to
call a method on the image object. I'll
use a Laplacian algorithm and set the
depth threshold fairly low.

Now we can see that the algorithm
automatically detected edges around
the dog, and the mat she was laying on.
Pretty cool!

Being able to detect these kinds of
features makes it easier to run images
through machine learning algorithms.

import cv2 as cv

img = cv.imread("dog.jpg")

lines = cv.Laplacian(img, cv.CV_8U)

cv.imshow("Image Window", lines)

k = cv.waitKey(0)

37

nltk

nltk, the Natural Language Toolkit, assists with natural language
processing for machine learning purposes. This is useful whenever
you're working with a corpus of written texts.

Website: https://www.nltk.org/

Install:

pip install nltk

38

https://www.nltk.org/

nltk Functions

One handy thing you can
do with nltk is to tokenize
text. This takes a sentence
and breaks it up into
words.

Note that this doesn't just
split up the string by
spaces- it intelligently
breaks up words based on
punctuation as well.

import nltk

text = '"My heart is in the work!" Andrew said.'

nltk.word_tokenize(text)

['``', 'My', 'heart',

 'is', 'in', 'the',

 'work', '!', "''",

 'Andrew', 'said', '.']

39

nltk Functions

You can also do sentiment analysis with
nltk, where you build a model to detect
whether a piece of text is generally
positive, negative, or neutral based on
the words in contains.

You can train your own model, but you
can also use a pre-built model by
importing the
SentimentIntensityAnalyzer,
which is in the sub-library sentiment.

Then you can just call the method
polarity_scores on the text you
want to score to see what the model
thinks!

import nltk.sentiment

analyzer = nltk.sentiment.SentimentIntensityAnalyzer()

analyzer.polarity_scores('"My heart is in the work!" Andrew said.')

{'neg': 0.0, 'neu': 1.0, 'pos': 0.0, 'compound': 0.0}

analyzer.polarity_scores("Today is such a beautiful day!")

{'neg': 0.0, 'neu': 0.488, 'pos': 0.512, 'compound': 0.636}

analyzer.polarity_scores("I'm in a bad mood. Go away.")

{'neg': 0.412, 'neu': 0.588, 'pos': 0.0, 'compound': -0.5423}

40

Web Development External
Modules

41

Regular Web Design

If you want to build a simple website- something that will just display
some text and images, perhaps - you should stick to the core languages
of website design, HTML for content structure and CSS for styling.

And if you just want to program in a little interactivity, the language
Javascript is easy to integrate with HTML and CSS, and is commonly
paired with those languages.

But if you want to build a more complex website that keeps track of
user state and saves data, Python can help you out!

42

Django

Django is a module that lets you build interactive websites using
Python. This involves setting up a frontend (the part of a website that
the user sees while browsing) and a backend (the part of a website that
processes requests and does the actual work).

Website: https://www.djangoproject.com/

Install:

pip install django

43

https://www.djangoproject.com/

Django Principles

The core principles behind Django are that it is object-oriented and it
uses databases extensively.

Django uses objects to represent the data tracked by a website. For
example, a User object might have properties like username, and
password, and items in a shopping cart.

A database is a data structure that's based on a table. Databases are
designed to be able to hold a lot of data and to make it easy to look up
data based on specific properties.

44

Programming with Django

Programming websites in Django is pretty complicated. It's only really
needed for complex websites, and you'll need to learn a bit about
object-oriented programming before starting.

Once you're ready, you can work through a tutorial of how to set up a
Django website here:

https://docs.djangoproject.com/en/3.2/intro/tutorial01/

45

https://docs.djangoproject.com/en/3.2/intro/tutorial01/

Flask

Flask is also a module that lets you build interactive websites using
Python. But Flask starts with a simple, lightweight website, instead of
requiring you to set up a database and objects first.

Website: https://flask.palletsprojects.com/

Install:

pip install flask

46

https://flask.palletsprojects.com/

Programming in Flask

You can set up a simple website in Flask pretty easily, just by using a function and some advanced
Python syntax.

import flask

app = flask.Flask("Example")

@app.route("/")

def tutorial():

 return "<p>My Website</p>"

But if you want to make more advanced websites, you'll still need to learn some complex Python
syntax first.

47

Beautiful Soup

Beautiful Soup is a module that supports webscraping and HTML
parsing. This is useful if you want to gather data from online for use in
an application.

Website: https://www.crummy.com/software/BeautifulSoup/

Install:

pip install beautifulsoup4

48

https://www.crummy.com/software/BeautifulSoup/

Parse HTML as Tags

HTML organizes content on a page using tags, like this:

<tag attribute="value">

 <subtag> Some content for the subtag </subtag>

</tag>

To parse a website, you need to look for a certain type of tag in the file.

49

Load HTML with urllib

First, how can you get the HTML of a website?

There's a handy built-in library for that, urllib. It doesn't work in all cases (like when
authentication is required), but it works for basic websites.

from bs4 import BeautifulSoup

import urllib.request

page = urllib.request.urlopen("https://docs.python.org/3/")

text = page.read()

doc = BeautifulSoup(text, 'html.parser')

50

BeautifulSoup Navigation

You can access the content of a BeautifulSoup page with tag names.

For example, at the top level of the whole document, request the title of the
page by accessing the property title, with a period between the variable and
the property. Or access the whole body of the page with the property body.

doc = BeautifulSoup(text, 'html.parser')

doc.title # <title>3.9.6 Documentation</title>

doc.body # <body><div aria-label="related navigation" ...

51

More BeautifulSoup Navigation

Sometimes tags will have other tags inside them. When this happens, you can
continue accessing specific tags at each level.

doc.body.p # <p>Welcome! This is the documentation for Python
...

For example, to get the first paragraph tag in the body, use doc.body.p.

If you want to get the text within that tag, just use the string property.

doc.body.p.string # '\n Welcome! This is the documentation
for ...

52

BeautifulSoup Functions

To get all the tags of a certain type in the document, instead of just the first tag of that type, use the
method find_all on the document. This produces a list of all the tags of that type.

a_tags = doc.find_all('a')

a_tags

[index,

modules,

Python,

3.9.6 Documentation,

...]

53

BeautifulSoup Attributes

Note that some of those a tags had properties. You can access the property of a tag with a
dictionary index.

a_tags[0]["href"]
"genindex.html"

So if I wanted to get all the links on a webpage, I could use this:

for tag in a_tags:
 print(tag["href"])
genindex.html
py-modindex.html
https://www.python.org/
...

54

Creative External Modules

55

Pillow: Python Imaging Library

Pillow is a lightweight and easy-to-install module that lets you manipulate
images beyond .gif files. It lets you modify images, or use different types of
images in Tkinter.

Website: https://pillow.readthedocs.io/en/stable/index.html

Install:
pip install pillow

Import:
import PIL

56

https://pillow.readthedocs.io/en/stable/index.html

Pillow Images

Pillow makes it very easy to open image
files, using the Image.open function.
You can even display those images with
image.show, or save them with
image.save.

from PIL import Image

img = Image.open("stella.jpg")

img.show()

img.save("new-stella.jpg")

57

Pillow Image Functions

You can provide Pillow images to the Tkinter create_image
function, but you can also manipulate them directly!

There are functions that let you crop and resize pictures
within the program, and much more! However, some of these
functions require that you use lists to hold the dimensions of
the picture.

newImg = img.crop([200, 200, 3500, 2500])
newImg.save("new-stella.jpg")

newImg2 = img.rotate(180)
newImg2.save("new-stella-2.jpg")

newImg3 = img.resize([1000, 1000])
newImg3.save("new-stella-3.jpg")

58

Pydub

Pydub makes it possible to play and edit audio files! However, it needs
a few additional libraries to work really robustly. First, you'll need to
install the library simpleaudio to play the edited sounds.

Website: https://github.com/jiaaro/pydub

Install:

pip install simpleaudio

pip install pydub

59

https://github.com/jiaaro/pydub

Pydub AudioSegments

Pydub lets you load a sound file into an AudioSegment object. It's then really easy to play the
sounds and edit them!

Unfortunately, by default the library only supports .wav files. It's possible to get the library to
work on more popular filetypes (like .mp3 files), but requires a lot of complicated installations.

First, let's just look at a simple example with a .wav file. Note that once the file starts playing, it
will continue until the song ends; you'll need to interrupt the program by pressing the lightning
bolt button if you want to stop it early.

from pydub import AudioSegment
from pydub import playback

music = AudioSegment.from_wav('song.wav')
playback.play(music)

60

Pydub AudioSegment Editing

To edit music with pydub, you use slicing, like how you edit strings and lists.

The AudioSegment represents the song in millisecond segments. So to get
the first second of a song, you'd use:

song[:1000] # first second

Or to get only the first half of a song, you'd use:

song[:len(song)//2] # first half

61

Pydub AudioSegment Editing

You can also change the volume of a song by adding or subtracting
decibels from it.

This works like NumPy arrays – you can add or subtract a single number
from the segment, and it will propagate across all the values.

song – 20 # make quieter

62

Pydub AudioSegment Functions

There are a bunch of cool functions already implemented for you. For
example, you can implement fading, or speed up a song or remove silence.

Note that these functions may take a little while to run- be patient! You can
always save the result in a new file, then play that file directly.

music = music.fade_in(10*1000)
music = music.speedup(2)
music = music.strip_silence()

music.export("new_song.wav", format="wav")

63

Pydub and MP3 Files

If you want to edit more popular music file formats (like mp3 files), you've got two
options.

One: try to install ffmpeg, a non-python library that supports a wide range of
audio formats. Unfortunately, you can't do this with pip. Here's instructions from
Pydub on how to install: https://github.com/jiaaro/pydub#getting-ffmpeg-set-up

Two: convert your MP3 file into a WAV file using a different audio application. One
option is VLC, which is available for free. You can convert files by going to Media >
Convert/Save, but you'll need to set up a new profile format for WAV. Here's
instructions for how to do that: https://promincproductions.com/blog/export-wav-
audio-file-from-any-video-clip-with-vlc/

64

https://github.com/jiaaro/pydub#getting-ffmpeg-set-up
https://promincproductions.com/blog/export-wav-audio-file-from-any-video-clip-with-vlc/
https://promincproductions.com/blog/export-wav-audio-file-from-any-video-clip-with-vlc/

Pygame

Pygame is, like Tkinter, a library that lets you make graphical
applications. However, Pygame is specifically designed to create games.
It has better support for sprites and collision detection than tkinter.

Website: https://www.pygame.org/news

Install:

pip install pygame

65

https://www.pygame.org/news

Pygame Essentials

The core difference between coding a game versus other kinds of coding is
that the game needs to be interactive, which means that it needs to keep
running continuously while waiting for input from the user.

Pygame supports this through a game loop. This is just a while loop that
loops until you tell it to stop.

Inside that loop, the game constantly checks for input from the user,
responds to any inputs it has received, and generally keeps the game
moving.

66

Pygame Window

Let's say we want to open up a simple
window. We can do that with the
set_mode method, but that by itself isn't
enough.

We also want to be able to close that
window by pressing the x button. So we
need to constantly check whether the user
has asked to quit inside the game loop.

We can do this by checking all the events
that were received by the game system.
When a QUIT event happens, exit the loop,
then call the built-in function exit to exit
the window as well.

import pygame

pygame.init()

playing = True

width, height = 500, 500
screen = pygame.display.set_mode([width, height])

while playing:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 playing = False

exit()

67

Pygame Demo

This isn't a game yet, though- it's just a window.

Let's make a simple clicker game. The user can click on an image on the
screen; whenever they do, their score goes up by one.

This demo will go over some of the core components of Pygame, but
there's a lot more it doesn't cover! You can do quite a bit with this
library.

68

Pygame Images

The tricky thing here is that Python needs to refresh
the window every time the game loop runs, just in
case something changes. So you should actually
draw the image inside the game loop.

However, you only want the image to show up once.
Before you draw anything, fill the background of the
screen with a solid color using screen.fill, to
erase anything drawn before.

First, load the image using the
pygame.image.load method. Then set up a
rectangle that corresponds to the image in the
position where you want to show up. Use
get_width and get_height on the image to
make sure it is centered. Finally, use screen.blit
to actually draw the image in the game loop.

import pygame

pygame.init()

playing = True
black = pygame.Color(0, 0, 0)
width, height = 500, 500
screen = pygame.display.set_mode([width, height])

icon = pygame.image.load("ball.gif")
icon_rect = pygame.Rect(250 - icon.get_width()/2,
 250 - icon.get_height()/2,
 250 + icon.get_width()/2,
 250 + icon.get_height()/2)

while playing:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 playing = False

 screen.fill(black)
 screen.blit(icon, icon_rect)
 pygame.display.flip()

exit()

69

Pygame Fonts

You should also set up a score in text. The score
itself can just be a variable, and the text can be
displayed above the image.

Set up a font first; then render text based on
that font. Then the text can just be displayed
with blit.

This time, let's specifically provide a coordinate
pair with the location where we want the text to
show up.

import pygame

pygame.init()

...

score = 0

white = pygame.Color(255, 255, 255)
font = pygame.font.SysFont("Arial", 32)
score_text = font.render("Score: " + str(score),
 False, white)

while playing:
 ...

 screen.fill(black)
 screen.blit(icon, icon_rect)
 screen.blit(score_text, [250 –
 score_text.get_width() / 2, 100])
 pygame.display.flip()

exit()

70

Pygame Collisions

Now we need to detect whether the image has been clicked
on. The easiest way to do this is with collision detection.

Luckily, this is something that Pygame does really well! If you
can capture where the user clicked on the screen, you can
easily detect whether that pixel location collided with the
image's icon.

To capture the clicked location, check for a new event type - a
MouseButtonUp event. This will happen when the user has
clicked on the screen and releases the button. When this
happens, use the pos property of the event to get the
mouse's current position.

Then call the method collidepoint on the image's
rectangle and the point to see if they collide. If they do,
update the score.

import pygame

pygame.init()

...

while playing:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 playing = False
 elif event.type == pygame.MOUSEBUTTONUP:
 if icon_rect.collidepoint(event.pos):
 score += 1
 ...

71

Pygame Collisions

This is a good start, but it isn't
enough by itself. We've updated
the score, but we haven't updated
the score text, so the change will
never be registered on the screen.

You need to update the
score_text variable to show the
new score. For now, let's just copy
and paste the line we used before.
In the future, though, this would
be better placed in a helper
function.

And with that, the game works!

import pygame

pygame.init()

...

while playing:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 playing = False
 elif event.type == pygame.MOUSEBUTTONUP:
 if icon_rect.collidepoint(event.pos):
 score += 1
 score_text = font.render("Score: " +
 str(score), False,
 white)
 ...

72

Game Programming

This approach works, and it's fine if you're not planning to develop the
game any further, but if you do plan to extend what the game can do,
you should restructure the code a bit.

Object-oriented approaches are really useful for game design. Putting
all your major game components into classes helps to organize your
code and makes it much easier to manage the core game loop.

This kind of approach also makes it easier to add new features, as it's
more clear where the code should go.

73

Vpython

Vpython is a nice library for creating and interacting with 3D graphics.
It's mainly aimed towards scientific simulations, though; for more
game-like 3D graphics, you'll probably want to use a game engine (like
Unity, or Unreal).

Website: https://vpython.org/

pip install vpython

74

https://vpython.org/

Vpython 3D Objects

Programming in Vpython is mostly similar to programming
in Tkinter. The main difference is that you construct 3D
objects like spheres and points instead of 2D shapes.

from vpython import *

ball = sphere(pos=vector(0, 0, 0),

 radius=100, color=color.blue)

pointer = arrow(pos=vector(0, 150, 0),

 axis=vector(100, 0, 0),

 color=color.yellow)

When you run the script, it opens a browser window to
render the graphics.

75

Vpython 3D Object Manipulation

You can then program in your own physics to
interact with the 3D objects or make them move.
Usually this is done by setting up an infinite while
loop.

The rate function tells the while loop how long to
wait between iterations. This makes it possible to
actually see the animation move.

For example, by changing the vector position of
the ball, we can make it move back and forth. We
can even have it change directions by changing the
delta movement.

Changing the axis of the arrow makes it point in
the same direction as the ball is moving.

move = vector(10, 0, 0)
while True:
 rate(100)
 ball.pos = ball.pos + move
 if ball.pos.x >= 300 or \
 ball.pos.x <= -300:
 move = vector(-move.x, 0, 0)
 pointer.axis = -pointer.axis

76

	Slide 1: External Modules
	Slide 2: Module Index
	Slide 3: Data Analysis External Modules
	Slide 4: SciPy Collection
	Slide 5: NumPy
	Slide 6: NumPy Arrays
	Slide 7: NumPy Arrays – Operations
	Slide 8: NumPy Arrays - Indexing
	Slide 9: NumPy Functions
	Slide 10: SciPy
	Slide 11: SciPy Functions
	Slide 12: Matplotlib
	Slide 13: Draw Visualizations on the Plot
	Slide 14: Add Visualizations with Methods
	Slide 15: Visualization Methods have Keyword Args
	Slide 16: Matplotlib Approaches
	Slide 17: Fig and Ax
	Slide 18: Pandas
	Slide 19: Pandas DataFrames
	Slide 20: Pandas DataFrame Columns
	Slide 21: Pandas DataFrame Indexing
	Slide 22: Pandas DataFrame Looping
	Slide 23: Pandas DataFrame Subsets
	Slide 24: Pandas Functions
	Slide 25: Machine Learning External Modules
	Slide 26: Machine Learning Overview
	Slide 27: scikit-learn
	Slide 28: Understanding Algorithms
	Slide 29: scikit-learn Demo
	Slide 30: Loading Data from a File
	Slide 31: Running the Algorithm
	Slide 32: scikit-learn Model Properties
	Slide 33: scikit-learn Model Properties
	Slide 34: scikit-learn Model Functions
	Slide 35: OpenCV
	Slide 36: OpenCV Example
	Slide 37: OpenCV Example
	Slide 38: nltk
	Slide 39: nltk Functions
	Slide 40: nltk Functions
	Slide 41: Web Development External Modules
	Slide 42: Regular Web Design
	Slide 43: Django
	Slide 44: Django Principles
	Slide 45: Programming with Django
	Slide 46: Flask
	Slide 47: Programming in Flask
	Slide 48: Beautiful Soup
	Slide 49: Parse HTML as Tags
	Slide 50: Load HTML with urllib
	Slide 51: BeautifulSoup Navigation
	Slide 52: More BeautifulSoup Navigation
	Slide 53: BeautifulSoup Functions
	Slide 54: BeautifulSoup Attributes
	Slide 55: Creative External Modules
	Slide 56: Pillow: Python Imaging Library
	Slide 57: Pillow Images
	Slide 58: Pillow Image Functions
	Slide 59: Pydub
	Slide 60: Pydub AudioSegments
	Slide 61: Pydub AudioSegment Editing
	Slide 62: Pydub AudioSegment Editing
	Slide 63: Pydub AudioSegment Functions
	Slide 64: Pydub and MP3 Files
	Slide 65: Pygame
	Slide 66: Pygame Essentials
	Slide 67: Pygame Window
	Slide 68: Pygame Demo
	Slide 69: Pygame Images
	Slide 70: Pygame Fonts
	Slide 71: Pygame Collisions
	Slide 72: Pygame Collisions
	Slide 73: Game Programming
	Slide 74: Vpython
	Slide 75: Vpython 3D Objects
	Slide 76: Vpython 3D Object Manipulation

