Exam 2 Review

15-110 — Monday 03/24

* Exam2 on Wednesday!

* Bring your paper notes (<=5 pages), something to write with, and your
andrewI|D card

* Arrive early if possible — we're checking IDs at the door

e HW5 includes Code Review #2! Same rules as Code Review #1.

* Sign up for a slot here: https://www.cs.cmu.edu/~110/hw/hw4-code-
review.html|

https://www.cs.cmu.edu/~110/hw/hw4-code-review.html
https://www.cs.cmu.edu/~110/hw/hw4-code-review.html

* Recursion
* Big-O Calculation
e Hashed Search

Recursion

The core idea of recursion is that we can solve problems by delegating
most of the work instead of solving it immediately.

This works because we make the input to the problem slightly smaller
every time the function is called. That means it will eventually hit a
base case, where the answer is known right away.

Once the base case returns a value, all the recursive calls can start
returning their own values up the chain of function calls until they
reach the initial call, which returns the final result.

When working with recursive code, it often
helps to think abstractly about how to solve
the problem with delegation before
jumping into coding.

For example: what if we wanted to reverse
a list using recursion? What is a base case
that we can solve immediately?

In the recursive case, how do we make the
problem smaller? What can we expect the
recursive result to be if the function works
correctly? Use that assumption to create

the final result!

def reverselList(1lst):
if len(lst) == @:
return []

else:
smaller = reverselList(1lst[1:])

return smaller + [1st[O]]

Activity: Recursion Code Reading

It's important to understand how def reverselist(lst):

recursive calls work behind the print("Call:", 1lst)

scenes! if len(lst) == 0:
print("Return:", [])
return []

You do: trace by hand what the
shown function call will output.
Note the print statements!

else:
smaller = reverselList(1lst[1:])
result = smaller + [1lst[O]]
print("Return:", result)
return result

reverselList([3, 6, 9])

Recursion is most powerful when we make multiple recursive calls in the

recursive case. This allows us to solve problems we can't solve without
recursion.

Towers of Hanoi (https://www.mathsisfun.com/games/towerofhanoi.html) is an
example of a problem you can only solve using recursion.

* Move all but one of the discs to the temporary position — recursive call
* Move the remaining disc to the goal — base case
* Move the all-but-one discs to the goal — recursive call

https://www.mathsisfun.com/games/towerofhanoi.html

To move 3 discs, move two, then the one remaining, then move the two again.

/‘

Move 2 L->M

Move 3 L->R

,\

Move 1 L->R

L = Left
M = Middle
R = Right

Move 1 L->R

Move 1 L->M

Move 1 R->M

Move 2 M->R

Move 1 M->L

Move 1 M->R

Move 1 L->R

To move 4 discs, move 3 discs by following the same procedure we
outlined before, just with a different destination. Use abstraction to
solve the problem!

Move 4 L->R
recursive call #1 / \ recursive call #2
— | v | T~
Move 3 L->M Move 1 L->R Move 3 M->R
| T base case | T
Move 2 L->R Move 1 L->M Move 2 R->M Move 2 M->L Move 1 M->R Move 2 L->R

Move 1 L->M Move 1 L->R Move 1 M->R Move 1 R->L Move 1 R->M Move 1 L->M Move 1 M->R Move 1 M->L Move 1 R->L Move 1 L->M Move 1 L->R Move 1 M->R

Big-O Calculation

When measuring the Big-O complexity of an algorithm, we must specify
what it is we're counting. Some popular choices:

* comparisons: target == lst[i]
e assignments: y[i+1] = x[1]
* recursive calls: recSearch(tree["left"], target)

e all'actions' in the program (all of the above, plus more)

When calculating Big-O, we don't care about coefficients. An
algorithms that makes 3n comparisons is considered just as fast as an
algorithm that makes 2n comparisons: both are O(n).

Only the dominant term matters:

0O(1) < O(log n) < O(n) < O(n?) < O(n3) < O(2") < O(n!)

When dealing with Big-O equations, n is the size of the input and k is
some constant number.

O(n¥) is polynomial in n and considered tractable, because k is constant

O(k") is exponential in n and considered "slow" (intractable) because n
is variable and will grow over time

Any algorithm that processes each element once is O(n).

 Add up the elements of a list
e Sum the numbers from 1 ton
e See if alist contains an odd number

* Find the index of the first even number

When is an algorithm O(n?)?

Doing an O(n) operation on every element of a list means the total
number of operations is O(n?).

Common example: nested for loops that both do n iterations:

for 1 in range(len(lst)):
for j in range(len(1lst)):
if (1 !'= j) and (1lst[i] == 1st[j]):
print(lst[i], "is duplicated")

When is an algorithm O(n?)?

An algorithm can be O(n?) even if it has just one loop!

for 1 in range(len(lst)):
if 1st[i] in (1st[:i] + 1lst[i+1:]):
print(lst[i], "is duplicated")

The in test on a list is itself O(n) and it is inside a for loop that does n
iterations, so the algorithm is O(n?).

If we cut the problem size in half each time and only consider one of the
halves, we can make log,(n) such cuts, so the algorithm is O(log n).

For example, binary search cuts the list in half each time, so it is O(log n).
Suppose we want the first digit of a long number:

wh11 n >
= n

9:
/] 1

This code makes log,,(n) divisions, so it is also O(log n).

When is an algorithm O(2")?

If we have a recursive algorithm operating on an input of size n and
each call makes two recursive calls of size n-1, then the algorithmis
O(2"). The number of calls doubles every time we increase the size by
1.

def abCombos(n, s):
if n == 0O:
print(s)
else:
abCombos(n-1, s + "a") # first recursive call
abCombos(n-1, s + "b") # second recursive call

When is an algorithm O(2")?

If we have a recursive algorithm and each call produces a result twice
as long as the previous result, then the algorithm is also O(2").

def allSubsets(lst):

if 1st == []:
return [1lst]
else:
result = []

subsets = allSubsets(lst[1:])

for s in subsets:
result.append(s)
result.append([1lst[0]] + s)

return result

Example: Quizlet6

What is the runtime of each line? What is the overall runtime?

1st is a list, n = len(1lst)
1. def example(lst):

2. i = len(lst) // 2 How many times will the loop iterate?
3. count = ©

4 while i < len(lst): Are there any operations that don't run
E if 1st[i] in 1st: in constant time?

6. count = count + 1

7. i =1+ 100

3. return count

21

Activity: Compute the Big-O

Consider the following function. What is its Big-O runtime in the worst case?

def example(s): # s is a string, n = len(s)
result = ""
for i1 in range(len(s)//2, len(s)):
result = s[i] + result

for j in range(len(s)//2):
if s[j].isupper():

result = result + s[j].lower() Hint: s.isupper and s.lower
else: . both run in O(n) time, but
result = result + s[j] what is the length of the
return result :
strings we call them on?

22

Hashed Search

Why do we care about hash functions?

We search all the time, so we want the fastest possible search. Storing
items in a hashtable lets us look up whether an item is in the table in
O(1) time. You can't get faster than that!

How can we search in constant time? The algorithm needs to know
where the value it's looking for will be stored if that value is actually in
the table.

A hashtable is like a big, empty list of a designated size. Like in a list,
each slot ('bucket’) in the table is associated with an integer index,
from O to len(table)-1.

When we want to put a value in the hashtable, we insert it at a specific
index based on the result of a hash function.

A hash function is a function that maps Python values to integers.
Those integers can then be used to find an index in the hashtable to
store the value.

We can use the built-in Python hash function or write our own. Either
way, the hash function must follow two rules:

* The result returned when the function is called on some value must
not change across calls

 The function should usually return different numbers when called
on different values

Both storing a value in a hashtable and checking whether a value is in a
hashtable follow the same procedure, which produces which index to check.

1. Run the hash function on the value to get the hashed value.
2. Mod the hashed value by the hashtable size to get the final index

Demo: Let's practice with some strings and the built-in hash function.

Why is looking up a value in a hashtable O(1) time?

We don't need to check every bucket in the hashtable. Only look in one
bucket- the one with the index associated with the hashed value.

Important: this only works if the value we're searching for can't change
(it's immutable) and if the hashtable is large enough for the stored
values to spread out. (10 buckets isn't nearly enough!)

	Slide 1: Exam 2 Review
	Slide 2: Announcements
	Slide 3: Review Topics
	Slide 4: Recursion
	Slide 5: Recursion: Big Idea
	Slide 6: Writing Recursive Code: reverseList
	Slide 7: Activity: Recursion Code Reading
	Slide 8: Recursion with Multiple Calls
	Slide 9: Towers of Hanoi – Visualize Moving 3 Discs
	Slide 10: Towers of Hanoi – Visualize Moving 4 Discs
	Slide 11: Big-O Calculation
	Slide 12: Big-O Essentials: What to Count?
	Slide 13: Big-O Essentials: Find the Dominant Term
	Slide 14: Big-O Essentials: Mind the Exponent
	Slide 15: When is an algorithm O(n)?
	Slide 16: When is an algorithm O(n2)?
	Slide 17: When is an algorithm O(n2)?
	Slide 18: When is an algorithm O(log n)?
	Slide 19: When is an algorithm O(2n)?
	Slide 20: When is an algorithm O(2n)?
	Slide 21: Example: Quizlet6
	Slide 22: Activity: Compute the Big-O
	Slide 23: Hashed Search
	Slide 24: Big Idea
	Slide 25: Hashtables
	Slide 26: Hash Functions
	Slide 27: Storing/Finding Values in Hashtables
	Slide 28: Why O(1)?

