Managing Large Code Projects

15-110 - Friday 03/24

* Check5 due on Monday

e Can do most of HW5's written component now too!

* TA Review Sessions:
* Sunday 03/26 4pm in GHC 4303

e Read and write data from files

* Implement and use helper functions in code to break up large
problems into solvable subtasks

Reading Data from Files

As we start building more complex programs, we'll often need to refer to data stored
elsewhere on the computer. That means we need to read data from a file.

Recall that all the files on your computer are organized in directories, or folders. The file
structure in your computer is a tree — directories are the inner nodes (recursively nested)
and files are the leaves.

When you're working with files, always make sure you know which sequence of folders
your file is located in. A sequence of folders from the top-level of the computer to a
specific file is called a filepath.

For example, Users > krivers > Documents > sample.txt refers to the file sample.txt in the
Documents folder, which is in the krivers folder, which is in the Users folder, which is at the
top level of the computer.

Opening Files in Python

To interact with a file in Python we'll need to access its contents. We can do this by
using the built-in function open(filepath). This will create a File object which we
can read from or write to.

f = open("/Users/krivers/Documents/sample.txt")

open can either take a full filepath or a relative path (relative from the location of
the python file). It's usually easiest to put the file you want to read/write in the same
directory as the python file so you can simply refer to the filename directly.

f = open("sample.txt")
if .py file is in Documents, will search for this file there

Reading and Writing from Files

When we open a file we need to specify whether we plan to read from or write to the file. This will
change the mode we use to open the file.

filename = "sample.txt"

f = open(filename, "r") # read mode

text = f.read() # reads the whole file as a single string

or

lines = f.readlines() # reads the lines of a file as a list of strings

f = open("sample2.txt", "w") # write mode
f.write(text) # writes a string to the file

Only one instance of a file can be kept open at a time, so you should always close a file once you're
done with it.

f.close()

WARNING: when you write to files in Python, backups are not
preserved. If you overwrite a file, the previous contents are gone
forever.

Be careful when writing to files! Make sure you're using the correct
filename before you run the program. Avoid overwriting original data
whenever possible; you can always wait and delete it after you're done.

You do: Download the file
sample.txt from the schedule
page and move it to the same
folder as a python script.

Try using open and read to open
the file and read the contents,
then print the contents.

Common file reading issues:

* make sure the file is actually in
the same directory as your
python script (check directory in
the %cd line when you run
Thonny)

* make sure the filename you've
entered is actually the right
filename (including the filetype
at the end!)

Helper Functions

In HW5 and Hw6 (and in projects you might work on outside of 15-110), the
code you write will be bigger than a single function. You'll often need to
write many functions that work together to solve a larger problem.

We briefly talked about how to call functions from other functions when we
first learned about function definitions and calls. Let's revisit the idea now.

We call a function that solves a subpart of a larger problem a helper
function. By breaking up a large problem into multiple smaller problems and
solving those problems with helper functions, we can make complicated
tasks more approachable.

In HW5 and Hw6 we've broken a problem down into helper functions
for you. But if you work on a separate project, you'll need to do this

Process on your own.

Try to identify subtasks that are repeated or are separate from the
main goal. Have one subtask per function to keep things simple. Use
these functions to break down the main function into individual steps.

Consider the game tic-tac-toe. It seems simple, but it involves multiple
parts to play through a whole game.

Discuss: what are the subtasks of tic-tac-toe?

Let's organize our tic-tac-toe game based on four core subtasks:
makeNewBoard (), which constructs and returns the starter board (a 2D list of strings)
showBoard(board), which displays a given board

takeTurn(board, ﬁlayer‘) which lets the given player ("X" or "0") make a move on
the board, returnmg the updated board

isGameOver(board), which returns True or False based on whether or not the game
is over

We'll only go over how to implement each function briefly. The most important thing right

now is how we use the helper functions in the main code.
14

Start With Assumptions

We'll start by assuming the helper functions already
work. Write a function that calls each helper function
in the appropriate place.

Start by calling makeNewBoard to generate the board.

Display the starting state by calling showBoard.

Use a loop to iterate over every turn in the game.
Alternate a Boolean variable to decide whether it's X's
or O's turn, and call takeTurn on the board and the
appropriate player to decide which move to make. Call
showBoard again each time to show the updated
board.

Keep looping until the game is over by checking
isGameOverin the loop condition.

def playGame():

print("Let's play tic-tac-toe!")
board = makeNewBoard()
showBoard(board)
playerlTurn = True
while not isGameOver (board):
if playerlTurn:
board = takeTurn(board, "X")
else:
board = takeTurn(board, "0")
showBoard (board)
playerlTurn = not playerlTurn
print("Goodbye!")

15

makeNewBoard and showBoanrd

makeNewBoard and showBoard are
simple; we can program these just using
concepts we've already learned.

The board will be a 3x3 2D list with " . "
for empty spaces, " X" for player X, and
"0" for player O.

Note that makeNewBoard takes no
parameters and returns a board,
whereas showBoard takes the board
and returns None. They match how we
used them before!

Construct the tic-tac-toe board
def makeNewBoard():
board = []
for row in range(3):
Add a new row to board
board.append([".", ".", "."])
return board

Print the board as a 3x3 grid
def showBoard(board):
for row in range(3):
line = ""
for col in range(3):
line += board[row][col]
print(line)

16

Ask the user to input where they want
to go next with row,col position
def takeTurn(board, player):
while True:
row = input("Enter a row for
col = input("Enter a col for

takeTurn

+ player + ":")
+ player + ":")

takeTurn has the user input the
row and col they want to fill in
using our old friend input. This is
also similar to programs we've
written before!

Check to make sure the row and col
are numbers with isdigit and
ensure that they select a valid and
unfilled space with if statements.

Keep looping until a valid location is
chosen. Update the board at that
spot, then return the updated
board.

Make sure it's a number!
if row.isdigit() and col.isdigit():
row = int(row)
col = int(col)
Make sure its in the grid!
if @ <= row < 3 and @ <= col < 3:
if board[row][col] == ".":
board[row][col] = player
stop looping when move is made
return board
else:
print("That space isn't open!")
else:
print("Not a valid space!")
else:
print("That's not a number!")

17

1sGameOver needs more helper functions

isGameOver is a bit more complicated. There
are multiple scenarios where the game can end-
if a player gets three in a row horizontally, or
vertically, or diagonally. The game can also end
if the board is filled.

Use more helper functions to break up the work
into parts! Generate strings holding all
rows/columns/diagonals with horizLines,
vertLines,and diaglLines. Check if the
board is already full with isFull.

Now we can write the function assuming these
helpers already work.

True if game 1s over, False is not
def isGameOver(board):
if isFull(board):
return True
allLines = horizlLines(board) + \
vertLines(board) + \
diaglLines(board)
for line in alllines:
if line == "XXX" or \
line == "000":
return True
return False

18

Again, we can create the helper functions

iSG am eOve r H e | pe rs for isGameOver using familiar logic.
Generate all horizontal lines # Generate both diagonal lines
def horizlLines(board): def diaglLines(board):
lines = [] leftDown = board[0][0] + \
for row in range(3): board[1][1] + \
lines.append(board[row][0] + \ board[2][2]
board[row][1] + \ rightDown = board[0][2] + \
board[row][2]) board[1][1] + \
return lines board[2][0]

return [leftDown, rightDown]
Generate all vertical lines

def vertLines(board): # Check if the board has no empty spots
lines = [] def isFull(board):
for col in range(3): for row in range(3):
lines.append(board[0][col] + \ for col in range(3):
board[1][col] + \ if board[row][col] == ".":
board[2][col]) return False

return lines return True 19

Put it all together and you've got a fully working Tic-Tac-Toe game!

The most important takeaways are:

* Use helper functions to separate out complicated subtasks and make
the overall task easier to represent

* Thoughtfully consider which data will need to be passed into each
helper function call so it can find the correct answer

* Keep track of which data will be returned by each function call

e Read and write data from files

* Implement and use helper functions in code to break up large
problems into solvable subtasks

	Slide 1: Managing Large Code Projects
	Slide 2: Announcements
	Slide 3: Learning Goals
	Slide 4: Reading Data from Files
	Slide 5: Reading Data From Files
	Slide 6: Opening Files in Python
	Slide 7: Reading and Writing from Files
	Slide 8: Be Careful When Programming With Files!
	Slide 9: Activity: Read a File
	Slide 10: Helper Functions
	Slide 11: Helper Functions
	Slide 12: Designing Helper Functions
	Slide 13: Example: Tic-Tac-Toe
	Slide 14: Breaking down Tic-Tac-Toe
	Slide 15: Start With Assumptions
	Slide 16: makeNewBoard and showBoard
	Slide 17: takeTurn
	Slide 18: isGameOver needs more helper functions
	Slide 19: isGameOver Helpers
	Slide 20: Functions Work Together
	Slide 21: Learning Goals

