Parallel Programming

15-110 - Friday 03/17




* Hw4 due on Monday

* Remember — it's extra-large! Don't leave it until the last minute!

* Also remember to complete the midsemester surveys by the Hw4

deadline for bonus points
* Course Survey: https://forms.gle/zv88GjCaExho6A3r6
* TA Survey: https://forms.gle/srk915EufREMJsMZ7



https://forms.gle/zv88GjCaExho6A3r6
https://forms.gle/srk915EufREMJsMZ7

e Recognize and define the following keywords: concurrency, parallel
programming, CPU, scheduler, throughput, multitasking,
multiprocessing, and deadlock

* Calculate the total steps and time steps taken by a parallel algorithm

* Create pipelines to increase the efficiency of repeated operations by
splitting steps across cores



New Unit: Scaling Up Computing




In the unit on Data Structures and Efficiency, we determined that
certain algorithms may take a long time to run on large pieces of data.

In this short unit, we'll address the following questions:

* How is it possible for complex algorithms on huge sets of data (like
Google search) to run quickly?

* How can we write algorithms that work across multiple computers,
instead of running on just one machine?



When we compute Big-O runtimes of programs, we count the number
of abstract actions taken. On real computers those actions must be
executed using real circuits, and we can influence the speed of those
circuits through the design of the computer's hardware. (The same
number of actions are taken — they can just happen a lot faster).

There are two ways we can easily speed up a computer:
* Increase the number of transistors on the computer
* Have the computer run actions in parallel instead of sequentially



®

A transistor is a small device that makes it possible to switch electric signals.
In other words, adding a transistor to a circuit gives the computer a choice
between two different actions.

The more transistors you add to a computer, the faster the computer gets. But
you're limited by the size of the transistors and the size of the computer;
there's only enough space to add so many transistors inside a computer.

Over time, engineers worked to fit more and more transistors on computers.
This meant that computers could get faster and faster every year as new
advances were made!



For a while, engineers were able to double the speed of computers every
two years by increasing the number of transistors in a computer. However,
around 2010 it became physically impossible to keep up this doubling rate
because of physical limitations related to power and heat. Computers
couldn't get faster unless we made them bigger.

This led to a different tactic: instead of speeding up computers by adding
more transistors, we decided to speed up computers by having them run
multiple programs at the same time. This is called concurrency.

To accomplish this, we had to change some of the hardware that makes
computers run...



CPUs and Multitasking




A CPU (Central Processing Unit), also called a
core, is the part of a computer's hardware that
actually runs the actions taken by a program.
It's composed of a large number of circuits.

The CPU is made up of several parts, including:

e Control unit: maps the individual steps taken
by a program to specific circuits.

* Logic units: individual circuits that can
perform simple operations (like addition and
multiplication).

* Registers: areas that can store information
and act as temporary memory.

10



Computers also have memory
that the CPU can read from and CPU
write to. This is how the CPU
can load instructions and save Input |— l ‘ —| Output
results.
Memory

Combine a CPU with memory
and basic mechanisms for input

and output, and you've got a This organization of CPU, memory, input, and
simple abstract computer! output is called a von Neumann architecture.




Schedulers Arrange Programs

When you use a computer, you don't
iUSt run one program at a time - you
ikely have multiple applications
open and running at any given
moment. How does the CPU decide
what action to take next?

The scheduler is a computer
component that takes information
from the programs that are currentl(}/
running and input from the user an
decides which program gets to use
the CPU.

MBS

\ /
!

Scheduler
|©

CPU

12



A scheduler could choose to let a program complete all of its actions before switching to
the next program. But it usually doesn't! The scheduler can make programs appear to run

at the same time by breaking each application's process into steps, then alternating
between the steps rapidly.

If this alternation happens quickly enough, it looks like true concurrency to the user, even
though only one process is running at any given point in time. This is called multitasking.

. > —>
Process 1: rUN run run
JE | OF-M &
\ S
run run

time 13



When two (or more) processes are
running at the same time, the steps don't
need to alternate perfectly.

g

The scheduler may choose to run several pprocess 1
steps of one process, then switch to one

step of another, then run all the steps of

a third. It might even choose to put a

process on hold for a long time, if itisn't

run run

a priority or is just stalling while waiting

run run
for a user action.

Ingeneral, the scheduler chooses which run
or

er to run the steps in to maximize ,
throughput for the user. Throughput is time
the amount of work a computer can do
during a set length of time.

14



Your computer uses multitasking to manage
all of the applications you run, as well as
the background processes needed to make
your computer work.

You can see all the applications your
computer's scheduler is managing by going
to your process manager (Task Manager on
Windows, Activity Monitor on Macs). You
can even see how much time each process
gets on the CPU!

You do: open your process manager now to
se|(<e how much CPU time each application
takes

. Task Manager

G Google Chrome (13)
n PowerPoint

=) Snagit (32 bit) (3)
B Sublime Text (2)

L. Task Manager

= Windows Explorer

| Background processes (129)

[@) 64-bit Synaptics Pointing Enhan...
[ AcroTray (32 bit)

] Adobe Acrobat Update Service ...
&) Adobe CEF Helper

== Adobe Collaboration Synchroni...

Fewer details

File Options View
Processes Performance App history Startup Users
~
Nam Status
| Apps (6)

Details Services

27%
CPU

1.3%
0%
4.3%

0%

2.0%

0%
0%
0%
0%

0%

54%

539.6 MB
125.4 MB
68.1 MB
1.9 MB
29.6 MB

64.8 MB

0.1 MB
0.1 MB
0.1 MB
11.6 MB

0.5 MB

2%
Disk

0.1 MB/s
0 MB/s
0.1 MB/s
0 MB/s
0 MB/s

0.1 MB/s

0 MB/s
0 MB/s
0 MB/s
0 MB/s

0 MB/s

0%

Network

0 Mbps
0 Mbps
0 Mbps
0 Mbps
0 Mbps

0 Mbps

0 Mbps
0 Mbps
0 Mbps
0 Mbps

0 Mbps

6%
GPU

0%
0%
1.5%
0%
0%

0%

0%
0%
0%
0%

0%



Multitasking is very useful, but it doesn't increase the speed of a
complex algorithm. A single CPU can still only run one action at a time,
so an algorithm is still limited to the rate designated by the design of

the CPU itself.

How can we speed up algorithms? We can use multiple CPUs!



Multiprocessing and
Parallel Programming




Multiprocessing is a method of concurrency where you run multiple
actions at the exact same time on a single computer.

To make this possible, you put multiple CPUs inside a single computer.
Then the computer can send different actions to different CPUs at the
same time.

If you have two CPUs instead of one, you can theoretically double the
speed of your computer. With four CPUs, you could quadruple it!



Sidebar: Multiple Processor vs. Multi-Core

Technically there are two ways to put several CPUs
into a single machine.

. : , Multiple
The first is to insert more than one processor chip
into the computer. This is called multiple Processors
processors.
The second is to put multiple 'cores' on a single
chip. Each core can manage its own set of actions.
This is called multi-core.
Multi-Core

There are slight differences between these two
approaches in terms of how quickly the CPUs can
work together and how they access memory. For
this class, we'll treat them as the same.

19



Scheduling with Multiprocessing

When we use multiple cores and multiprocessing, we can run our
applications simultaneously by assigning them to different cores.

Each core has its own scheduler, so they can work independently.

Process 3: nun g

N

run run
[on Core 1]
Process 9: . R
‘on Core 2| run run

v

time

20



Simplified Scheduling

Here's a simplified visualization of scheduling with multiprocessing,
where we condense all of the steps of an application into one block.

Corel Microsoft Word
Core 2 Firefox

Core 3 Thonny

Core 4 oom




The number of cores we have on a single computer is usually still
limited. Most modern computers use somewhere between 2-8 cores. If
you run more than 2-8 applications at the same time, the cores use
multitasking to make them appear to run concurrently.

You can check how many cores your own computer has! If you're on
Windows, go back to the task manager and switch to the tab

'Performance’. If you're on a Mac, go to About This Mac > System
Report > Hardware.



Scheduling with Multiprocessing and Multitasking

Here's a simplified view of what scheduling might look like when we
combine multiprocessing with multitasking.

Core 1 Microsoft Word PPT Microsoft Word PPT Microsoft Word PPT

Core 2 Firefox I Firefox I Firefox I Firefox I Firefox

Core 3

Core 4



We can use multiprocessing to run multiple applications at the same
time, but we can also use it to run a single process on multiple cores at
the same time. This is called parallel programming, because the
program is being run on multiple CPUs in parallel.

With parallel programming, our efficiency problem should be solved!
Now we can take an inefficient algorithm and just split it across a bunch
of cores; that way, the work can get done a lot faster!

Unfortunately, it's not that simple...



Parallel programming tends to be more difficult than regular programming. It
forces you to think in new ways and adds many new constraints to the

problems you try to solve.

Because this is so difficult, we won't write actual parallel programs in this
class. But we will talk about common algorithmic approaches for writing

parallel code.

To solve a problem using parallel programming, we must design algorithms
that can be split across multiple processes. This varies greatly in difficulty
based on the problem we're solving!



Let's start with a simple example. We showed in
class how to write a function that can sum all
the nodes in a tree. This would run in O(n) time
sequentially, since each node needs to be
visited. What if we do it concurrently?

We do zero-to-two recursive calls in each
recursive case (one on the left child, one on the
right). Call the left child recursively on the
current core and send the right child's call to a
new core. This lets us do the two recursive calls
concurrently. In our example to the right, this is
shown using different colors for each core.



When we want to determine the efficiency of a parallel algorithm, it helps to
compare the total number of steps to the number of time steps.

The total number of steps is just the number of actions taking place across
all CPUs in the whole process. For summing the previous tree that's always 7
steps, whether or not we use parallelization.

The number of time steps is the number of steps taken over time. Multiple
actions can be merged into a single time step when they happen at the same
time. Summing the tree sequentially takes seven time steps, but summing
the tree concurrently only takes three time steps.



How can we calculate the efficiency of

concurrent tree summing? Consider the °
original core, which does the most steps.

This will only do one call per level of the tree. e a

If the tree is balanced, it will have log n ° 0 ° °

levels. Concurrent tree-summing is O(log n)!



It's easy to make recursive problems like tree-summing concurrent if they make multiple
recursive calls. It's harder to think concurrently when writing programs that use loops.

We could plan to identify all the iterations of the loop and run each iteration on a separate
core. But what if the results of all the iterations need to be combined? And what if each
iteration depends on the result of the previous one? This gets even harder if we don't know
how many iterations there will be overall, like when we use a while loop.

A bit later, we'll talk about how to use algorithmic plans to address these difficulties.

def search(lst, target): def getSum(1lst): def powers0Of2(n):
for item in 1st: sum = © 1 =2

if item == target: for item in 1st: while 1 < n:

return True sum = sum + item print(i)

return False return sum i=1%*2 29



The next difficulty of writing
parallel programs comes from
the fact that multiple cores need
to share individual resources on
a single machine.

Input

For example, two different

programs might want to access
the same part of the computer's
memory at the same time. They
might both want to update the
computer's screen or play audio
over the computer's speaker.

CPU CPU
Memory

Output




We can't just let two programs update a resource simultaneously- this will result in garbled
results that the user can't understand. For example, if one program wants to print "Hello
World" to the console and the other wants to print "Good Morning", the user might end up
seeing "Hello Good World Morning".

To avoid this situation, programs put a lock on a shared resource when they access it.
While a resource is locked, no other program can access it.

Then, when a program is done with a resource, it yields that resource back to the
computer system, where it can be sent to the next program that wants it.

Sidebar: if we want two programs to use a resource simultaneously, we usually use a third
program to combine the actions together, and that third program is the one that accesses
the resource. For example, if you listen to music while watching a lecture recording, your
computer mixes the two audio tracks together and plays the combined result.



In general, this system of locking and
vielding fixes most cases where programs
might try to use a resource at the same
time. But there are some situations where
it can cause trouble.

Two programs, Youtube and Zoom, both
want to access the screen and audio. They
put their requests in at the same time, and
the computer gives the screen to Youtube
and the audio to Zoom.

Both programs will lock the resource they
have, then wait for the next resource to
become available. Since they're waiting on
each other, they'll wait forever! This is
known as deadlock.

o =
D

32




In general, we say that deadlock occurs when
two or more processes are all waiting for some
resource that other processes in the group
already hold. This will cause all processes to
wait forever without proceeding.

Deadlock can happen in real life! For example,
if enough cars edge into traffic at four-way
intersections, the intersections can get locked
such that no one can move forward.

In the example to the right, each direction of
traffic needs two of the intersection spots, but
only hlas one. All four directions are blocked as
a result.

33



In order to fix deadlock, impose an
order that programs always follow
when requesting resources.

For example, maybe Youtube and
Zoom must receive the screen lock
before they can request the audio.
When Youtube gets the screen, it can
make a request for the audio while
Zoom waits for its turn.

When Youtube is done, it will yield
its resources and Zoom will be able
to access them.

34



We can't always guarantee that the processes running concurrently on a computer
are independent. If a single program is split into multiple tasks that run concurrently
instead, those tasks might need to share partial results as they run. They'll need a
way to communicate with each other.

Data is shared between processes by passing messages. When one task has found a
result, it may send it to the other process before continuing its own work.

If one process depends on the result of another, it may need to halt its work while it
waits on the message to be delivered. This can slow down the concurrency, as it takes
time for data to be sent between cores or computers. Example: in tree-summing, a
core will need to wait for both calls to finish before it can sum the results.



Writing algorithms that can pass messages is tricky. To make it easier,
we use general algorithmic approaches that can be adapted for
specific tasks.

We'll discuss one common approach today (pipelining) and another in
the next lecture (MapReduce).



Pipelining



Pipelining Definition

One algorithmic process that simplifies
parallel algorithm design is pipelining. In
this process, you start with a task that
repeats the same#orocedure over many
ditferent pieces of data.

The steps of the procedure are split across
different cores. Each core is like a single
worker on an assembly line; when it is
given a piece of data it executes the step,
then passes the result to the next core.

Just like in an assembly line, the cores can
run multiple pieces of data simultaneously
by starting new computations while the
others are still in progress.

39



Let's compare pipelining to sequential work with a real-life race!

We need to generate ten greeting cards. We can divide the process of writing
a greeting card into three sequential steps:

1. Write '"Wish you were here!' inside the card
2. Put the card inside an envelope and seal it
3. Write 'To: Stella' on the front of the sealed envelope

What happens if we have one process (person) complete all three tasks vs.
having three processes (people) complete the tasks using a pipeline?



Here's an example of pipelining through the lens of line cooking. To make a pizza,
we must:

1. Flatten the dough
2. Apply the toppings
3. Bake in the oven

If we need to make four pizzas without parallelization, it will look like this:

W-P—-A-W-DP-A-W- DA **@

This takes 12 total steps. What if we used pipelining?




Worker 1:

(o)
Worker 2: /é’o /
@l o Q
. »
Worker 3:

/

N\

(&

‘\

fﬁ fﬁ fﬁ fﬁ

%
00—
(o]

o

O
o

o
o

o

N\

Each worker has one task. #1 flattens dough, #2 arranges toppings, #3 bakes in the oven.

There are still 12 total steps, but only 6 time steps occur.

N\

(&

PRemium S PRODUCT
PIZZA

& DELIVERY B




When designing a pipeline, it's important to remember that each step
relies on the step that came before it. You cannot start applying
toppings until the dough has been flattened.

Additionally, the length of time that the pipelining process takes
depends on the longest step. If flattening dough and applying toppings
are fast (maybe 5 minutes each) but cooking in the oven is slow (maybe
20 minutes), the whole process will have to wait on the slowest step to
conclude.



Pipelining is most useful when the number of shared resources is
limited. For example, you probably use pipelining when doing laundry
at home, because you have a limited number of washers and driers to

work with!

In computer science, pipelining is used to increase the efficiency of
certain operations, like matrix multiplication. It's also used in the Fetch-
Decode-Execute cycle, which is how the CPU processes instructions.



e Recognize and define the following keywords: concurrency, parallel
programming, CPU, scheduler, throughput, multitasking,
multiprocessing, and deadlock

* Calculate the total steps and time steps taken by a parallel algorithm

* Create pipelines to increase the efficiency of repeated operations by
splitting steps across cores



	Slide 1: Parallel Programming
	Slide 2: Announcements
	Slide 3: Learning Goals
	Slide 4: New Unit: Scaling Up Computing
	Slide 5: New Unit: Scaling Up Computing
	Slide 6: Two Ways to Increase Efficiency
	Slide 7: Transistors Provide Electronic Switching
	Slide 8: Switch From Smaller Transistors to Concurrency
	Slide 9: CPUs and Multitasking
	Slide 10: CPUs Manage Computation
	Slide 11: CPUs Interact with Memory
	Slide 12: Schedulers Arrange Programs
	Slide 13: Multitasking with a Scheduler
	Slide 14: Schedulers Maximize Throughput
	Slide 15: Your Computer Multitasks
	Slide 16: Multitasking is Fake Concurrency
	Slide 17: Multiprocessing and  Parallel Programming
	Slide 18: Multiprocessing Runs Multiple CPUs
	Slide 19: Sidebar: Multiple Processor vs. Multi-Core
	Slide 20: Scheduling with Multiprocessing
	Slide 21: Simplified Scheduling
	Slide 22: Multiprocessing and Multitasking
	Slide 23: Scheduling with Multiprocessing and Multitasking
	Slide 24: Parallel Programming Divides a Program
	Slide 25: Difficulty of Design
	Slide 26: Summing a Tree Concurrently
	Slide 27: Total Steps vs Time Steps
	Slide 28: Summing a Tree Concurrently
	Slide 29: Making Loops Concurrent
	Slide 30: Sharing Resources
	Slide 31: Locking and Yielding Resources
	Slide 32: Deadlock Stalls the System
	Slide 33: Deadlock Definition
	Slide 34: Fix Deadlock With Ordered Resources
	Slide 36: Some Processes Need to Communicate
	Slide 37: Generic Parallel Approaches
	Slide 38: Pipelining
	Slide 39: Pipelining Definition
	Slide 40: Demo: Real-Life Pipelining
	Slide 41: Sequential Pizza – 1 worker, 1 oven, 12 steps
	Slide 42: Pipelining Pizza - 3 workers, 1 oven, 6 steps
	Slide 43: Rules for Pipelining
	Slide 44: Benefits of Pipelining
	Slide 45: Learning Goals

