Recursion

15-110 — Wednesday 02/15

4L 4L 4L
VY V%

s+

4 4L AL
Ve V o Vs

A A A

Cool Repeating Patterns

HFEEEEEEEEER
QOOOOOQOQOC
HEEEEEENR

QOOOOOOOOO
NN EEEEEEN

14531
r‘>er

[

o
V'

[

v v v
b b

A & &L &L

>
h

e v
Ar4 bt h D

T
e
Bhbsbss D>
IR

R R e
>4 4>

AJ(
PHhsD L A%

%
S
<
»
<

l-§l-§l-§l-§
+4444444
I-QI-QI-QI-Q
4444444
l.*l-‘l-§l-§
4444444
I-QI-QI-QI-Q
+4444444
R R R B2

i+ ull+ ull 4 ull + i<
LA A A A A A A AL

 Exam1 is next Wednesday!
* Will cover content from Unit 1 (Checkl, Hw1, Check2, Hw?2)

* Exam problems are similar to homework problems (a mix of written and
programming), but all solved on paper.

* You have the whole lecture period (50 minutes) to take the exam.

* Exam logistics:
* Open-note — you may bring up to five pages of paper notes
* Closed to collaboration — don't discuss the exam with others until feedback is
released!

 What to bring - Your notes, something to write with, and your andrewID card
(we'll check IDs at the door)

* Exam Review Materials: https://www.cs.cmu.edu/~110/assessments.html

Topics List: knowledge components that may be tested
Notes Sheet: a starting place for conceptual review/creating your own notes
Lecture Recordings: recordings of Unitl lectures

Practice Problems: exam-similar problems generated by the TAs. Solutions will be
released on Monday

* May or may not be the same difficulty level as the exam

Lecture Review Session: next Monday. We'll go over topics based on your vote.
* Piazza poll closes Friday 2pm: https://piazza.com/class/lcp556nkons13w/post/59
* TA Review Session: Sunday 02/19 1pm in GHC 4401. Content review & examples

Other Practice Problems: for topic-specific practice problems and external resources, see
https://www.cs.cmu.edu/~110/practice.html

* In particular, check out the OLI practice on For Loops!

https://www.cs.cmu.edu/~110/assessments.html
https://piazza.com/class/lcp556nkons13w/post/59
https://www.cs.cmu.edu/~110/practice.html

* Define and recognize base cases and recursive cases in
recursive code

e Read and write basic recursive code

Concept of Recursion

Concept of Recursion

Recursion is a concept that shows up commonly in computing and in
the world.

Core idea: an idea X is recursive if X is used in its own definition.

Example: fractals; nesting dolls; your computer's file system

eo® [cos432-hw-devel Please Loke one.!-
4> 5= l;::l | () (8] (=] 2 (aj(a “““m
FAVORITES F 5 :‘:‘H . (4 apps » [agenda » [autograder L
& — [becellint » [BACKUP - deployWebsite.sh
% Dropbox .
e 1‘ :z::zg:::g ‘D:: 3 codejail N cosd32-hw-devel S o HWL
= All My Files & introce 5 . [codevaulr » - cosd32Assignments £ HW2 .
? AirDrop i Movies . (3 common ~ [grading ~ [HW3 L
[Desktop £l Music . [copied [Hw2 [HW4 »
o & od . [cos126 » “ meetingplanning (] HW4_new . W\TH
Applicati... & Picwres . [cos226 » .0 moo (0 Hws ’
[Documents Y orimes (] cos432 » [notes » |5 README ECURS\ON
© Downloads | g gum 4 . & dkunisky.ps “ oldhwl (] sampleSelutions .
i [scuts . 21 hwo.docx " orgMeetingAgenda [save » ’?
J2 Music - [misc " outputpackl.zip [secureComm .
. H songl.mp3) ~ h i
E Movies B song2.mps (7 nifty » b outputpack2.zip (1 web ’ L,oke one
. T
Pictures [__I temp R [__l onlineCourses L I outputpack3.zip
B era &8 temporary . [profdef » [pass
s=a & tools . [professional = " Questions for Ed
rogrammin L ~ schedulin:
sHARED) toy.conf S rogr = Pl ambc-comics.com
B x-5 7 unf.py =
- [VirtualBox VMs . (] service » | weeklymeteting 7
DEVICES 3 work o [tools »

(&) Remote... |2l Macintosh HD » (] Users » 4} jug » [] work » (] cos432 » [] cos432-hw-devel

Recursion is a hard concept to master because it is different from how
we typically approach problem-solving.

But recursion also makes it possible for us to solve some problems with
simple, elegant algorithms. It also lets us think about how to structure
data in new ways.

AL AL AL AL L)

We'll start by using recursion to solve very simple problems, then show
how it applies more naturally to complex problems in the future.

When we use recursion in algorithms, it's generally used to implement
delegation in problem solving, sometimes as an alternative to iteration.

To solve a problem recursively:
1. Find a way to make the problem slightly smaller
2. Delegate solving that problem to someone else

3. When you get the smaller-solution, combine it with the solution to
the remaining part of the problem to get the answer

How do we add the numbers on a deck of cards?

Iterative approach: keep track of the total so far, iterate over the cards,
add each to the total.

Recursive approach: take a card off the deck, delegate adding the rest
of the deck to someone else, then when they give you the answer, add
the remaining card to their sum.

Let's look at how we'd add the deck of four cards using iteration.

Pre-Loop:

total | 0

cards I 5 2 7 3

Let's look at how we'd add the deck of four cards using iteration.

First iteration:

total

cards I 5 2 7 3

Let's look at how we'd add the deck of four cards using iteration.

Second iteration:

total

cards I 5 2 7 3

Let's look at how we'd add the deck of four cards using iteration.

Third iteration:

total 14

cards I 5 2 7 3

Let's look at how we'd add the deck of four cards using iteration.

Fourth iteration:

total 17

cards | 5 2 7 3 And we're done!

Iteration in Code

We could implement this in code with the following function:

def iterativeAddCards(cards):
total = ©
for 1 in range(len(cards)):
total = total + cards[i]
return total

16

Now let's add the same deck of cards using recursion.

Start State:

total | 0

cards I 5 2 7 3

Now let's add the same deck of cards using recursion.

Make the problem smaller:

total I 0

cards I 5 2 7 3

Now let's add the same deck of cards using recursion.

Delegate that smaller problem:

total I 0

cards | 5 2 7 3

This is the Recursion
Genie. They can solve
problems, but only if
the problem has been
made slightly smaller
than the start state.

Now let's add the same deck of cards using recursion.

Get the smaller problem's solution:

total I 0

12

cards I 5 2 7 3

Now let's add the same deck of cards using recursion.

Combine the leftover solution with the smaller solution:

total I 17 .

cards I 5 2 7 3

And we're done!

Recursion in Code

Now let's implement the recursive approach in code.

def recursiveAddCards(cards):
smallerProblem = cards[1:]
??? # how to call the genie?

smallerResult
return cards[@] + smallerResult

22

Base Cases and Recursive Cases

We don't need to make a new algorithm to implement the Recursion Genie. Instead,
we can just call the function itself on the slightly-smaller problem.

Every time the function is called, the problem gets smaller again. Eventually, the
problem reaches a state where we can't make it smaller. We'll call that the base case.

C) 3

g ¥

When the problem gets to the base case, the answer is immediately known. For
example, in adding the numbers on a deck of cards, the sum of an empty deck is O.

That means the base case can solve the problem without delegating. Then it can
pass the solution back to the prior problem-solver and start the chain of solutions.

5 +

2 +

5 2 7 3

C) 2

Recursion in Code — Recursive Call

To update our recursion code, we'll take two steps. First, we need to
add the call to the function itself.

def recursiveAddCards(cards):
smallerProblem = cards[1:]

smallerResult = recursiveAddCards(smallerProblem)

return cards[@] + smallerResult

26

Recursion in Code — Base Case

Second, we add in the base case as an explicit instruction about what
to do when the problem cannot be made any smaller.

def recursiveAddCards(cards):
if cards == []:
return 0
else:
smallerProblem = cards[1:]
smallerResult = recursiveAddCards(smallerProblem)
return cards[@] + smallerResult

27

Every Recursive Function Includes Two Parts

These two big ideas are used in all recursive algorithms.
* Base case(s): One or more simple cases that can be solved with no further work

* Recursive case(s): One or more cases that require solving "simpler"
(smaller/shorter/closer to the base case) version(s) of the original problem

def recursiveAddCards(cards):
if cards == :
L] base case
return 0
~ else:
recursive smallerProblem = cards[1:]

case smallerResult = recursiveAddCards(smallerProblem)

return cards[0] + smallerResult

28

Recall how we used tracing with bookmarks to keep track of nested
function calls. Python also uses this approach to track recursive calls!

Because each function call has its own set of local variables (which
includes function parameters), the values across functions don't get
confused.

Let's switch to a different slide deck for an example.

Activity: Base Case/Recursive Case

Let's design a non-code algorithm for
baking a multi-layer cake. You want
to bake a cake that has n layers, but
you can only bake one layer at a
time. You want to use recursion to
solve this problem.

You do: in general terms, what is the
base case for this problem? And in
the recursive case, how do we make
the problem smaller and combine
the results? You don't need to write
code, just consider the algorithmic
cases.

Programming with Recursion

General Recursive Form

Thinking of recursive algorithms can be tricky at first. However, most of the
simple recursive functions you write can take the following form:

def recursiveFunction(problem):
if problem == ???: # base case is the smallest value
return _ # something that isn't recursive
else:
smallerProblem = ??? # make the problem smaller
smallerResult = recursiveFunction(smallerProblem)
return # combine with the leftover part

32

When you write a recursive function, always remember that the base
case must return the same type as the recursive case.

If the types are different, you'll have a problem combining the next step
with the smaller-result because the type of the smaller-result will be
inconsistent.

Also make sure that you always provide the correct type in the
argument given to the recursive function call. It must match the type of

the function's parameter.

Assume we want to implement What's the base case?
factorial recursively (takes an int,

X ==
returns an int). Recall that:

What's the smaller problem?

X! = x*(x-1)*(x-2)*...*2*1
X -1

We could rewrite that as... o
How to combine it?

| K (x-1)! Multiply result of (x-1)! by x
x! = X x-1)!

34

Writing Factorial Recursively

We can take these algorithmic components and combine them with the
general recursive form to get a solution.

def factorial(x):
if x == 1: # base case
return 1 # something not recursive

else:
smaller = factorial(x - 1) # recursive call

return X * smaller # combination

35

Sidebar: Infinite Recursion Causes RecursionError

What happens if you call a function on an
input that will never reach the base case? It
will keep calling the function forever!

Example: factorial(5.5)

Python keeps track of how many function
calls have been added to the stack. If it sees
there are too many calls, it raises a
RecursionError to stop your code from
repeating forever.

If you encounter a RecursionError, check

a) whether you're making the problem_
smaller each time, and b?whether the input
you're using will ever reach the base case.

Learn to Make
program § recursive |

function

36

Example: countVowels(s)

Let's do another example. Write the function countVowels(s) that takes a
string and recursively counts the number of vowels in that string, returning

an int. For example, countVowels("apple") would return 2.

def countVowels(s):

if : # base case
return

else: # recursive case
smaller = countVowels()

return

37

Example: countVowels(s)

We make the string smaller by removing one letter. Change the code's behavior
based on whether the letter is a vowel or not.

def countVowels(s):
if s == "": # base case
return ©
else: # recursive case
smaller = countVowels(s[1l:])
if s[0] in "AEIOU":
return 1 + smaller
else:
return smaller

38

Example: countVowels(s)

An alternative approach is to make multiple recursive cases based on the
smaller part.

def countVowels(s):

if s == "": # base case
return 0

elif s[@] in "AEIOU": # recursive case
smaller = countVowels(s[1:])
return 1 + smaller

else:
smaller = countVowels(s[1:])
return smaller

39

Example: removeDuplicates(1st)

Let's do one final example. Write the function removeDuplicates(1lst) that
takes a list of items and recursively generates a new list that contains only one of
each unique item from the original list. For example, removeDuplicates([1,
2, 1, 2, 3, 4, 3, 3]) mightreturn[1, 2, 3, 4].

def removeDuplicates(1lst):
if : # base case

return

else: # recursive case
smaller = removeDuplicates()

return

40

Example: removeDuplicates(1st)

The recursive case generates a list that holds only unique elements. Just check
whether the remaining element is already in that list or not!

def removeDuplicates(lst):
if 1st == []: # base case
return []
else: # recursive case
smaller = removeDuplicates(lst[1l:])
if 1st[@] in smaller:
return smaller
else:
return [1st[@]] + smaller

41

You do: Write recursiveMatch(1lstl, 1st2), which takes two lists of
eqlual Ienlgtljcgnd returns the number of indexes where 1st1 has the same
value as 1st2.

For example, recursiveMatch([4, 2, 1, 6], [4, 3, 7, 6])
should return 2.

Note: you can index into and slice both lists at the same time!

Another note: when it comes to writing recursive code, be optimistic. Write
a sollutlon that should work assuming the recursive call gives the proper
result.

42

* Define and recognize base cases and recursive cases in recursive code

 Read and write basic recursive code

	Slide 1: Recursion
	Slide 2: Cool Repeating Patterns!
	Slide 3: Announcements
	Slide 4: Announcements
	Slide 5: Learning Objectives
	Slide 6: Concept of Recursion
	Slide 7: Concept of Recursion
	Slide 8: Why Use Recursion?
	Slide 9: Recursion in Algorithms
	Slide 10: Example: Iteration vs. Recursion
	Slide 11: Implementing Iteration
	Slide 12: Implementing Iteration
	Slide 13: Implementing Iteration
	Slide 14: Implementing Iteration
	Slide 15: Implementing Iteration
	Slide 16: Iteration in Code
	Slide 17: Implementing Recursion
	Slide 18: Implementing Recursion
	Slide 19: Implementing Recursion
	Slide 20: Implementing Recursion
	Slide 21: Implementing Recursion
	Slide 22: Recursion in Code
	Slide 23: Base Cases and Recursive Cases
	Slide 24: Big Idea #1: The Genie is the Algorithm Again!
	Slide 25: Big Idea #2: Base Case Builds the Answer
	Slide 26: Recursion in Code – Recursive Call
	Slide 27: Recursion in Code – Base Case
	Slide 28: Every Recursive Function Includes Two Parts
	Slide 29: Python Tracks Recursion with Code Tracing!
	Slide 30: Activity: Base Case/Recursive Case
	Slide 31: Programming with Recursion
	Slide 32: General Recursive Form
	Slide 33: Important: Return Types Must Match!
	Slide 34: Example: factorial
	Slide 35: Writing Factorial Recursively
	Slide 36: Sidebar: Infinite Recursion Causes RecursionError
	Slide 37: Example: countVowels(s)
	Slide 38: Example: countVowels(s)
	Slide 39: Example: countVowels(s)
	Slide 40: Example: removeDuplicates(lst)
	Slide 41: Example: removeDuplicates(lst)
	Slide 42: Activity: recursiveMatch(lst1, lst2)
	Slide 43: Learning Objectives

