
Recursion
15-110 – Wednesday 02/15

Cool Repeating Patterns!

2

Announcements

• Exam1 is next Wednesday!
• Will cover content from Unit 1 (Check1, Hw1, Check2, Hw2)
• Exam problems are similar to homework problems (a mix of written and

programming), but all solved on paper.
• You have the whole lecture period (50 minutes) to take the exam.

• Exam logistics:
• Open-note – you may bring up to five pages of paper notes
• Closed to collaboration – don't discuss the exam with others until feedback is

released!
• What to bring - Your notes, something to write with, and your andrewID card

(we'll check IDs at the door)

3

Announcements

• Exam Review Materials: https://www.cs.cmu.edu/~110/assessments.html
• Topics List: knowledge components that may be tested
• Notes Sheet: a starting place for conceptual review/creating your own notes
• Lecture Recordings: recordings of Unit1 lectures
• Practice Problems: exam-similar problems generated by the TAs. Solutions will be

released on Monday
• May or may not be the same difficulty level as the exam

• Lecture Review Session: next Monday. We'll go over topics based on your vote.
• Piazza poll closes Friday 2pm: https://piazza.com/class/lcp556nkons13w/post/59
• TA Review Session: Sunday 02/19 1pm in GHC 4401. Content review & examples

• Other Practice Problems: for topic-specific practice problems and external resources, see
https://www.cs.cmu.edu/~110/practice.html
• In particular, check out the OLI practice on For Loops!

4

https://www.cs.cmu.edu/~110/assessments.html
https://piazza.com/class/lcp556nkons13w/post/59
https://www.cs.cmu.edu/~110/practice.html

Learning Objectives

• Define and recognize base cases and recursive cases in
recursive code

• Read and write basic recursive code

5

Concept of Recursion

6

Concept of Recursion

Recursion is a concept that shows up commonly in computing and in
the world.

Core idea: an idea X is recursive if X is used in its own definition.

Example: fractals; nesting dolls; your computer's file system

7

Why Use Recursion?

Recursion is a hard concept to master because it is different from how
we typically approach problem-solving.

But recursion also makes it possible for us to solve some problems with
simple, elegant algorithms. It also lets us think about how to structure
data in new ways.

We'll start by using recursion to solve very simple problems, then show
how it applies more naturally to complex problems in the future.

8

Recursion in Algorithms

When we use recursion in algorithms, it's generally used to implement
delegation in problem solving, sometimes as an alternative to iteration.

To solve a problem recursively:

1. Find a way to make the problem slightly smaller

2. Delegate solving that problem to someone else

3. When you get the smaller-solution, combine it with the solution to
the remaining part of the problem to get the answer

9

Example: Iteration vs. Recursion

How do we add the numbers on a deck of cards?

Iterative approach: keep track of the total so far, iterate over the cards,
add each to the total.

Recursive approach: take a card off the deck, delegate adding the rest
of the deck to someone else, then when they give you the answer, add
the remaining card to their sum.

10

Implementing Iteration

Let's look at how we'd add the deck of four cards using iteration.

Pre-Loop:

11

total 0

cards 5 2 7 3

Implementing Iteration

Let's look at how we'd add the deck of four cards using iteration.

First iteration:

12

total 0

i 0

cards

5

5 2 7 35 2 7 3

Implementing Iteration

Let's look at how we'd add the deck of four cards using iteration.

Second iteration:

13

total 5

i 0

cards

7

5 2 7 35 2 7 3

1

Implementing Iteration

Let's look at how we'd add the deck of four cards using iteration.

Third iteration:

14

total 7

i 1

cards

14

5 2 7 35 2 7 3

2

Implementing Iteration

Let's look at how we'd add the deck of four cards using iteration.

Fourth iteration:

15

total 14

i 2

cards

17

5 2 7 35 2 7 3

3

And we're done!

Iteration in Code

We could implement this in code with the following function:

def iterativeAddCards(cards):

total = 0

for i in range(len(cards)):

total = total + cards[i]

return total

16

Implementing Recursion

Now let's add the same deck of cards using recursion.

Start State:

17

total 0

cards 5 2 7 3

Implementing Recursion

Now let's add the same deck of cards using recursion.

Make the problem smaller:

18

total 0

cards 5 2 7 35 2 7 3

Implementing Recursion

Now let's add the same deck of cards using recursion.

Delegate that smaller problem:

19

total 0

cards 5 2 7 3

This is the Recursion
Genie. They can solve
problems, but only if
the problem has been
made slightly smaller
than the start state.

Implementing Recursion

Now let's add the same deck of cards using recursion.

Get the smaller problem's solution:

20

total 0

cards 5 2 7 3

12

Implementing Recursion

Now let's add the same deck of cards using recursion.

Combine the leftover solution with the smaller solution:

21

total 0

cards 5 2 7 3

125 +

17

And we're done!

Recursion in Code

Now let's implement the recursive approach in code.

def recursiveAddCards(cards):

smallerProblem = cards[1:]

smallerResult = ??? # how to call the genie?

return cards[0] + smallerResult

22

Base Cases and Recursive Cases

23

Big Idea #1: The Genie is the Algorithm Again!

We don't need to make a new algorithm to implement the Recursion Genie. Instead,
we can just call the function itself on the slightly-smaller problem.

Every time the function is called, the problem gets smaller again. Eventually, the
problem reaches a state where we can't make it smaller. We'll call that the base case.

24

2 7 3

7 3
3

5 2 7 3

Big Idea #2: Base Case Builds the Answer
When the problem gets to the base case, the answer is immediately known. For
example, in adding the numbers on a deck of cards, the sum of an empty deck is 0.

That means the base case can solve the problem without delegating. Then it can
pass the solution back to the prior problem-solver and start the chain of solutions.

25

2 7 3

7 3
3

5 2 7 3

0

125 +17

03 +
37 +

102 +

Recursion in Code – Recursive Call

To update our recursion code, we'll take two steps. First, we need to
add the call to the function itself.

def recursiveAddCards(cards):

smallerProblem = cards[1:]

smallerResult = ???

return cards[0] + smallerResult

26

def recursiveAddCards(cards):

smallerProblem = cards[1:]

smallerResult = recursiveAddCards(smallerProblem)

return cards[0] + smallerResult

Recursion in Code – Base Case

Second, we add in the base case as an explicit instruction about what
to do when the problem cannot be made any smaller.

def recursiveAddCards(cards):

if ???

????

else:

smallerProblem = cards[1:]

smallerResult = recursiveAddCards(smallerProblem)

return cards[0] + smallerResult

27

def recursiveAddCards(cards):

if cards == []:

return 0

else:

smallerProblem = cards[1:]

smallerResult = recursiveAddCards(smallerProblem)

return cards[0] + smallerResult

Every Recursive Function Includes Two Parts

These two big ideas are used in all recursive algorithms.

• Base case(s): One or more simple cases that can be solved with no further work

• Recursive case(s): One or more cases that require solving "simpler"
(smaller/shorter/closer to the base case) version(s) of the original problem

28

def recursiveAddCards(cards):

if cards == []:

return 0

else:

smallerProblem = cards[1:]

smallerResult = recursiveAddCards(smallerProblem)

return cards[0] + smallerResult

base case

recursive
case

Python Tracks Recursion with Code Tracing!

Recall how we used tracing with bookmarks to keep track of nested
function calls. Python also uses this approach to track recursive calls!

Because each function call has its own set of local variables (which
includes function parameters), the values across functions don't get
confused.

Let's switch to a different slide deck for an example.

29

Activity: Base Case/Recursive Case

Let's design a non-code algorithm for
baking a multi-layer cake. You want
to bake a cake that has n layers, but
you can only bake one layer at a
time. You want to use recursion to
solve this problem.

You do: in general terms, what is the
base case for this problem? And in
the recursive case, how do we make
the problem smaller and combine
the results? You don't need to write
code, just consider the algorithmic
cases.

30

Programming with Recursion

31

General Recursive Form

Thinking of recursive algorithms can be tricky at first. However, most of the
simple recursive functions you write can take the following form:

def recursiveFunction(problem):

if problem == ???: # base case is the smallest value

return ____ # something that isn't recursive

else:

smallerProblem = ??? # make the problem smaller

smallerResult = recursiveFunction(smallerProblem)

return ____ # combine with the leftover part

32

Important: Return Types Must Match!

When you write a recursive function, always remember that the base
case must return the same type as the recursive case.

If the types are different, you'll have a problem combining the next step
with the smaller-result because the type of the smaller-result will be
inconsistent.

Also make sure that you always provide the correct type in the
argument given to the recursive function call. It must match the type of
the function's parameter.

33

Example: factorial

Assume we want to implement
factorial recursively (takes an int,
returns an int). Recall that:

x! = x*(x-1)*(x-2)*...*2*1

We could rewrite that as...

x! = x * (x-1)!

What's the base case?

x == 1

What's the smaller problem?

x - 1

How to combine it?

Multiply result of (x-1)! by x

34

Writing Factorial Recursively

We can take these algorithmic components and combine them with the
general recursive form to get a solution.

def factorial(x):

if x == 1: # base case

return 1 # something not recursive

else:

smaller = factorial(x - 1) # recursive call

return x * smaller # combination

35

Sidebar: Infinite Recursion Causes RecursionError

What happens if you call a function on an
input that will never reach the base case? It
will keep calling the function forever!

Example: factorial(5.5)

Python keeps track of how many function
calls have been added to the stack. If it sees
there are too many calls, it raises a
RecursionError to stop your code from
repeating forever.

If you encounter a RecursionError, check
a) whether you're making the problem
smaller each time, and b) whether the input
you're using will ever reach the base case.

36

Example: countVowels(s)

Let's do another example. Write the function countVowels(s) that takes a
string and recursively counts the number of vowels in that string, returning
an int. For example, countVowels("apple") would return 2.

def countVowels(s):

if ____________: # base case

return ________

else: # recursive case

smaller = countVowels(_______)

return ______________

37

Example: countVowels(s)

We make the string smaller by removing one letter. Change the code's behavior
based on whether the letter is a vowel or not.

def countVowels(s):
if s == "": # base case

return 0

else: # recursive case

smaller = countVowels(s[1:])
if s[0] in "AEIOU":

return 1 + smaller

else:

return smaller

38

Example: countVowels(s)

An alternative approach is to make multiple recursive cases based on the
smaller part.

def countVowels(s):
if s == "": # base case

return 0
elif s[0] in "AEIOU": # recursive case

smaller = countVowels(s[1:])
return 1 + smaller

else:
smaller = countVowels(s[1:])
return smaller

39

Example: removeDuplicates(lst)

Let's do one final example. Write the function removeDuplicates(lst) that
takes a list of items and recursively generates a new list that contains only one of
each unique item from the original list. For example, removeDuplicates([1,
2, 1, 2, 3, 4, 3, 3]) might return [1, 2, 3, 4].

def removeDuplicates(lst):

if ____________: # base case

return ________

else: # recursive case

smaller = removeDuplicates(_______)

return ______________
40

Example: removeDuplicates(lst)

The recursive case generates a list that holds only unique elements. Just check
whether the remaining element is already in that list or not!

def removeDuplicates(lst):
if lst == []: # base case

return []

else: # recursive case

smaller = removeDuplicates(lst[1:])
if lst[0] in smaller:

return smaller

else:

return [lst[0]] + smaller

41

Activity: recursiveMatch(lst1, lst2)

You do: Write recursiveMatch(lst1, lst2), which takes two lists of
equal length and returns the number of indexes where lst1 has the same
value as lst2.

For example, recursiveMatch([4, 2, 1, 6], [4, 3, 7, 6])
should return 2.

Note: you can index into and slice both lists at the same time!

Another note: when it comes to writing recursive code, be optimistic. Write
a solution that should work assuming the recursive call gives the proper
result.

42

Learning Objectives

• Define and recognize base cases and recursive cases in recursive code

• Read and write basic recursive code

43

	Slide 1: Recursion
	Slide 2: Cool Repeating Patterns!
	Slide 3: Announcements
	Slide 4: Announcements
	Slide 5: Learning Objectives
	Slide 6: Concept of Recursion
	Slide 7: Concept of Recursion
	Slide 8: Why Use Recursion?
	Slide 9: Recursion in Algorithms
	Slide 10: Example: Iteration vs. Recursion
	Slide 11: Implementing Iteration
	Slide 12: Implementing Iteration
	Slide 13: Implementing Iteration
	Slide 14: Implementing Iteration
	Slide 15: Implementing Iteration
	Slide 16: Iteration in Code
	Slide 17: Implementing Recursion
	Slide 18: Implementing Recursion
	Slide 19: Implementing Recursion
	Slide 20: Implementing Recursion
	Slide 21: Implementing Recursion
	Slide 22: Recursion in Code
	Slide 23: Base Cases and Recursive Cases
	Slide 24: Big Idea #1: The Genie is the Algorithm Again!
	Slide 25: Big Idea #2: Base Case Builds the Answer
	Slide 26: Recursion in Code – Recursive Call
	Slide 27: Recursion in Code – Base Case
	Slide 28: Every Recursive Function Includes Two Parts
	Slide 29: Python Tracks Recursion with Code Tracing!
	Slide 30: Activity: Base Case/Recursive Case
	Slide 31: Programming with Recursion
	Slide 32: General Recursive Form
	Slide 33: Important: Return Types Must Match!
	Slide 34: Example: factorial
	Slide 35: Writing Factorial Recursively
	Slide 36: Sidebar: Infinite Recursion Causes RecursionError
	Slide 37: Example: countVowels(s)
	Slide 38: Example: countVowels(s)
	Slide 39: Example: countVowels(s)
	Slide 40: Example: removeDuplicates(lst)
	Slide 41: Example: removeDuplicates(lst)
	Slide 42: Activity: recursiveMatch(lst1, lst2)
	Slide 43: Learning Objectives

