
Lists and Methods
15-110 – Friday 02/10

Announcements

• Hw2 due Monday at noon
• Start early!!

2

Learning Goals

• Read and write code using 1D and 2D lists

• Use string/list methods to call functions directly on values

3

Unit 2 Overview

4

Unit 2: Data Structures and Efficiency

Data Structures: things we use while programming to organize multiple
pieces of data in different ways.

Efficiency: the study of how to design algorithms that run quickly, by
minimizing the number of actions taken.

These concepts are connected, as we often design data structures so
that specific tasks have efficient algorithms.

5

Unit 2 Topic Breakdown

Data Structures: lists, dictionaries, trees, graphs

Efficiency: search algorithms, Big-O, tractability

6

Lists

7

Lists are Containers for Data

A list is a data structure that holds an ordered collection of data values.

Example: a sign-in sheet for a class.

Lists make it possible for us to assemble and analyze a collection of
data using only one value/variable.

8

Sign In Here
0. Elena
1. Max
2. Eduardo
3. Iyla
4. Ayaan

List Syntax

We use square brackets to set up a list in Python.

a = [] # empty list

b = ["uno", "dos", "tres"] # list with three strings

c = [1, "dance", 4.5] # lists can have mixed types

9

Core List/String Operations
Lists share most of their core operations with strings. You can concatenate lists together, just like
strings.

[1, 2] + [3, 4] # concatenation – [1, 2, 3, 4]

And you can repeat lists an integer number of times, again like strings.

["a", "b"] * 2 # repetition – ["a", "b", "a", "b"]

We learned about indexing, slicing, and membership checks last time- those work on lists too.

lst = ["a", "b", "c", "d"]

lst[1] # indexing – "b"

lst[2:] # slicing – ["c", "d"]

"c" in lst # membership - True

10

Sidebar: Built-in List Functions

There are some new built-in functions we'll want to use with lists.

len(lst) # length of a list

min(lst) # smallest element of the list

max(lst) # biggest element of the list

sum(lst) # total sum of elements in the list

random.choice(lst) # picks a random element from the
list

11

Activity: Evaluate the Code

You do: what will each of the following code snippets evaluate to?

[5] * 3

["a", "b", "c"][1]

min([5, 1, 8, 2])

12

Looping Over Lists

Looping over lists works the same way as with strings. We can use a for
loop over the indexes of the list to access each item. For example, the
following loop sums all the values in prices.

prices = [5.50, 3, 2.75]

total = 0

for i in range(len(prices)):

total = total + prices[i]

print(total)

13

Example: findMax(nums)

Let's write a function that finds the maximum value in a list of integers.

def findMax(nums):
biggest = nums[0] # why not 0? Negative numbers!

for i in range(len(nums)):

if nums[i] > biggest:

biggest = nums[i]
return biggest

We'll often use this algorithmic structure to find the biggest/best item in a
structure.

14

2D Lists

15

2D Lists are Lists of Lists

We often need to work with data that is
two-dimensional, such as the coordinates
on a grid, values in a spreadsheet, or
pixels on a screen. We can store this type
of data in a 2D list, which is just a list that
contains other lists.

For example, the 2D list to the right holds
population data, where each population
entry itself contains multiple data values
(city, county, and population).

16

Population List

0.

1.

2.

3.

4.

0. "Pittsburgh"
1. "Allegheny"
2. 302407

0. "Philadelphia"
1. "Philadelphia"
2. 1584981

0. "Allentown"
1. "Lehigh"
2. 123838

0. "Erie"
1. "Erie"
2. 97639

0. "Scranton"
1. "Lackawanna"
2. 77182

Syntax of 2D Lists

Setting up a 2D list is no different than setting up a 1D list; each inner list is one data value.

cities = [["Pittsburgh", "Allegheny", 302407],

["Philadelphia", "Philadelphia", 1584981],

["Allentown", "Lehigh", 123838],

["Erie", "Erie", 97639],

["Scranton", "Lackawanna", 77182]]

When indexing into a 2D list, the first square brackets index into a row and the second
index into a column. The length of a 2D list is the number of lists inside the outer list.

cities[2] # ["Allentown", "Lehigh", 123838]

cities[2][1] # "Lehigh"

len(cities) # 5

17

This is across multiple
lines but treated as one
line because each part
ends with a comma.

Looping Over 2D Lists

We can loop over a 2D list the same way we loop over a list. Indexing into a
list once will produce an inner list. We'll need to index a second time to get a
value.

def getCounty(cities, cityName):

for i in range(len(cities)):

entry = cities[i] # entry is a list

if entry[0] == cityName:

return entry[1]

return None # city not found

18

Looping Over All 2D List Elements

When you loop over a 2D list and want to access every element, you need to use nested for
loops. Often, the outer loop iterates over the indexes of the outer list (rows) and the inner
loop iterates over the indexes of the inner list (columns).

gameBoard = [["X", " ", "O"], [" ", "X", " "], [" ", " ", "O"]]

for row in range(len(gameBoard)): # each row is a list

boardString = ""

for col in range(len(gameBoard[row])): # each col is a string

boardString = boardString + gameBoard[row][col]

print(boardString) # separate rows on separate lines

19

Activity: getTotalPopulation(cities)

Fill in the blanks for the function getTotalPopulation(cities) that takes the city-
information 2D list from before and finds the total population of all cities in the list.

def getTotalPopulation(cities):

__________ = 0

for row in range(__________):

pop = __________

total = __________

return total

Hint: note that the population is in the third column. Which index corresponds to that?

20

Methods

21

Methods Are Called Differently

Most string and list built-in functions (and data structure functions in general) work
differently from other built-in functions. Instead of writing:

isdigit(s)

write:

s.isdigit()

This tells Python to call the built-in string function isdigit on the string s. It will then
return a result normally. We call this kind of function a method, because it belongs to a
data structure.

This is how our Tkinter methods work too! create_rectangle is called on canvas,
which is a data structure.

22

Don't Memorize- Use the API!

There is a whole library of built-in string and list methods that have already been
written; you can find them at

docs.python.org/3/library/stdtypes.html#string-methods

and
docs.python.org/3/tutorial/datastructures.html#more-on-lists

We're about to go over a whole lot of potentially useful methods, and it will be
hard to memorize all of them. Instead, use the Python documentation to look for
the name of a function that you know probably exists.

If you can remember which basic actions have already been written, you can always
look up the name and parameters when you need them.

23

https://docs.python.org/3.8/library/stdtypes.html#string-methods
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Some Methods Return Information

Some methods return information about the
value.

s.isdigit(), s.islower(), and
s.isupper() return True if the string is all-
digits, all-lowercase, or all-uppercase, respectively.

s.count(x) and lst.count(x) return the
number of times the subpart x occurs in s or lst.

s.index(x) and lst.index(x) return the
index of the subpart x in s or lst, or raise an
error if it doesn't occur in the value.

s = "hello"

lst = [10, 20, 30, 40, 50]

s.isdigit() # False

s.islower() # True

"OK".isupper() # True

s.count("l") # 2

lst.count(20) # 1

s.index("o") # 4

lst.index(5) # ValueError!

24

Example: Checking a String

As an example of how to use methods, let's write a function that
returns whether or not a string holds a capitalized name. The first letter
of the name must be uppercase and the rest must be lowercase.

def formalName(s):

return s[0].isupper() and s[1:].islower()

25

Some Methods Create New Values

Other string methods return a new value based
on the original.

s.lower() and s.upper() return a new
string that is like the original, but all-lowercase
or all-uppercase, respectively.

s.replace(a, b) returns a new string where
all instances of the string a have been replaced
with the string b.

s.strip() returns a new string with excess
whitespace (spaces, tabs, newlines) at the front
and back removed.

s = "Hello"

a = s.lower() # a = "hello"

b = s.upper() # b = "HELLO"

c = s.replace("l", "y")

c = "Heyyo"

d = " Hi there ".strip()

d = "Hi there"

26

Example: Making New Strings

We can use these new methods to make a silly password-generating function. Note
how we have to reassign the variable each time to hold onto the changes!

def makePassword(phrase):

phrase2 = phrase.lower()

phrase3 = phrase2.replace("a", "@").replace("o", "0")

return phrase3

27

Some Methods Change Data Types

Finally, some methods let you convert between
strings and lists as needed.

s.split(c) splits up a string into a list of
strings based on the separator character, c.

c.join(lst) joins a list of strings together
into a single string, with the string c between
each pair.

e = "one,two,three".split(",")

e = ["one", "two", "three"]

f = "-".join(["ab", "cd", "ef"])

f = "ab-cd-ef"

28

[if time] Activity: getFirstName(fullName)

You do: write the function getFirstName(fullName), which takes a
string holding a full name (in the format "Farnam Jahanian") and
returns just the first name. You can assume the first name will either be
one word or will be hyphenated (like "Soo-Hyun Kim").

You'll want to use a method and/or an operation in order to isolate the
first name from the rest of the string.

29

Learning Goals

• Read and write code using 1D and 2D lists

• Use list methods to change lists without variable assignment

30

	Slide 1: Lists and Methods
	Slide 2: Announcements
	Slide 3: Learning Goals
	Slide 4: Unit 2 Overview
	Slide 5: Unit 2: Data Structures and Efficiency
	Slide 6: Unit 2 Topic Breakdown
	Slide 7: Lists
	Slide 8: Lists are Containers for Data
	Slide 9: List Syntax
	Slide 10: Core List/String Operations
	Slide 11: Sidebar: Built-in List Functions
	Slide 12: Activity: Evaluate the Code
	Slide 13: Looping Over Lists
	Slide 14: Example: findMax(nums)
	Slide 15: 2D Lists
	Slide 16: 2D Lists are Lists of Lists
	Slide 17: Syntax of 2D Lists
	Slide 18: Looping Over 2D Lists
	Slide 19: Looping Over All 2D List Elements
	Slide 20: Activity: getTotalPopulation(cities)
	Slide 21: Methods
	Slide 22: Methods Are Called Differently
	Slide 23: Don't Memorize- Use the API!
	Slide 24: Some Methods Return Information
	Slide 25: Example: Checking a String
	Slide 26: Some Methods Create New Values
	Slide 27: Example: Making New Strings
	Slide 28: Some Methods Change Data Types
	Slide 29: [if time] Activity: getFirstName(fullName)
	Slide 30: Learning Goals

