Debugging Logical Errors

When your code generates a logical error, the best
thing to do is compare the expected output to the
actual output.

1. Copy the function call from the assert thatis
failing into the interpreter. Compare the actual
output to the expected output.

e assert functions work buy throwing an
assertion error if the expression inside them
is false

2. If the expected output seems incorrect, re-read
the problem prompt.

3. If you're not sure why the actual output is
produced, use a debugging process to investigate.

If you've written the test set yourself, you should also
take a moment to make sure the test itself is not
incorrect.

= | example.py

def findAverage(total, n):
if n <= 0:
return "Cannot compute the average"
return total // n

def testFindAverage():
print("Testing findAverage()...", end="")
assert(findAverage(20, 4) == 5)
assert(findAverage(13, 2) == 6.5)
assert(findAverage(10, 0) == "Cannot compute the average")
print("... done!")

testFindAverage()

Running script: "C:\Users\river\Downloads\example.py"
Testing findAverage()...Traceback (most recent call last):
File "C:\Users\river\Downloads\example.py", line 13, in
<module>
testFindAverage()
File "C:\Users\river\Downloads\example.py", line 9, in t
estFindAverage
assert(findAverage(13, 2) == 6.5)
AssertionE

>>>

expected output

function call

Ways to Debug

There are many approaches you can take towards debugging code
effectively. Let's highlight three.

* Rubber Duck Debugging: talking through your code
* Printing and Experimenting: visualizing what's in your code
* Thorough Tracing: checking each part of the code line-by-line

Sidebar: Clean Up Top-Level Testing

Some students like to test their code by adding print statements and
function calls at the top level of the code (not inside a function).

This is fine, but if you do this, remove the top-level code before you
submit on Gradescope. Otherwise, the tool might mark your entire
submission as incorrect instead of only marking the single broken
function.

Alternative approach: do testing in the interpreter! After you 'Run File
as Script’, all of your functions are available there to be tested.

Rubber Duck Debugging

If you find yourself getting stuck, try rubber duck debugging. Explain
what your code is supposed to do and what is going wrong out loud to
an inanimate object, like a rubber duck.

In the process of explaining your code out loud to someone else, you
may find that a piece of your code does not match your intentions, or
that you missed a step. You can then make the fix easily. This works

more often than you might think!

Print and Experiment

If rubber duck debugging doesn't work, try
printing and experimenting to determine
where in your code the problem is.

Add print statements around where you think
the error occurs that display relevant values in
the code. Run the code again and check
whether the printed values match what you
think they should be at that stage in the code.

Each print call should also include a brief string
that gives context to what is being printed.
Here is an example of a piece of code that
could have a logical error, and how we could
use print statements to see what's going
wrong:

£ is some function

def foo():
x = (1)
y = £(2)

print(“Before if x=", x, “y=", y”)

if x < 10:
y += 100
print(“In if y=", vy)
elif y < 10:
X += 100

print(“In elif x=", x)
else:

X +=y

print(“In else x=", Xx)
print(x, y)

return x + vy

When something goes wrong with your code, before rushing to change
the code itself, you should make sure you understand conceptually
what your code does.

First- make sure you're solving the right problem! Re-read the problem
prompt to check that you're doing the right task.

It can often help to analyze the test cases to make sure you
understand why each input results in each output.

Making Hypotheses

If something looks wrong in the printed results, make a hypothesis
about what the problem is and adjust your code accordingly. Then run
the code again and see if the values change. Repeat this as much as
necessary until your code works as expected.

An important part of this process is that you have to be intentional
about the changes you make. Don't just change parts of the code
haphazardly - have a theory for why each change might fix your
problem.

Thorough Tracing

If you can't find the problem through printing and experimenting, you
may have to resort to thorough tracing to determine what's going
wrong.

Step through your code line by line and track on paper what values
should be held in each of your variables at each step of the process.

Compare your traced values with what you would create step-by-step
if you were solving the problem by hand. This might help you identify
where the problem is occurring.

Tracing with Tools

Learning how to trace code by hand is a useful skill, but there are also tools

that can help support you during debugging. Start with the website
http://pythontutor.com/ .

If you paste your code into the editor and click 'Visualize Execution’, you can
step through your code line by line. The tool will visualize the state of the
program on the right as you step through it. This can be very helpful!

Python 3.6

(known limitations) Frames Objects
def findAverage(total, n): Global frame function
if n <= @: findAverages(total, n)

return "Cannot compute the average”
return total // n

- findA B
assert(findAverage(13, 2) == 6.5) tngEll (43
2
Edit this code Ret
th ted val ©
=) line t

| << First | | <Prev | | Next> | | Last>> |

Step 6 of 6

http://pythontutor.com/

Finally, remember that debugging is hard! If you've spent more than
15 minutes stuck on an error, more effort is not the solution. Get a
friend or TA to help (or Piazza!), or take a break and come back to the
problem later. A fresh mindset will make finding your bug much easier.

HOW'S THE
DEBUGGING
i’y GOING?

11

	Slide 1: Debugging Logical Errors
	Slide 2: Debug Logical Errors By Checking Inputs and Outputs
	Slide 3: Ways to Debug
	Slide 4: Sidebar: Clean Up Top-Level Testing
	Slide 5: Rubber Duck Debugging
	Slide 6: Print and Experiment
	Slide 7: Understanding the Prompt
	Slide 8: Making Hypotheses
	Slide 9: Thorough Tracing
	Slide 10: Tracing with Tools
	Slide 11: Debugging is Hard

