While Loops

15-110 — Friday 02/03

* Check2 due Monday at noon

e Use while loops when reading and writing algorithms to repeat
actions while a certain condition is met

* |dentify start values, continuing conditions, and update actions for
loop control variables

* Translate algorithms from control flow charts to Python code

* Use nesting of statements to create complex control flow

Repeating Actions Is Annoying

Let's write a program that prints out the numbers from 1 to 10. Up to now, that would look like:

print(1)
print(2)
print(3)
print(4)
print(5)
print(6)
print(7)
print(8)
print(9)
print(10)

A loop is a control structure that lets us repeat actions so that we don't need
to write out similar code over and over again.

Loops are generally most powerful if we can find a pattern between the
repeated items. Noticing patterns lets us separate out the parts of the action
that are the same each time from the parts that are different.

In printing the numbers from 1 to 10, the part that is the same is the action
of printing. The part that is different is the number that is printed.

While Loops

A while loop is a type of loop that keeps repeating only while a certain
condition is met. It uses the syntax:

while <booleanExpression>:
<loopBody>

The while loop checks the Boolean expression, and if it is True, it runs the
loop body. Then it checks the Boolean expression again, and if it is still True,
it runs the loop body again... etc.

When the while loop finds that the Boolean expression is False, it skips
the loop body the same way an 1f statement would skip its body.

Unlike 1t statements, the condition in a while loop must eventually become
False. If this doesn't happen, the while loop will keep going forever!

The best way to make the condition change from True to False is to use a
variable as part of the Boolean expression. We can then change the variable inside
the while loop. For example, the variable 1 changes in the loop below.

i=1

while i < 5:
print(i)
i=1+1

print("done")

What happens if we don't ensure that the condition eventually becomes False?
The while loop will just keep looping forever! This is called an infinite loop.

i=1

while i > @:
print(1i)
i=1+1

If you get stuck in an infinite loop, press the button that looks like a stop sign above
the editor to make the program stop. Then investigate your program to figure out
why the variable never makes the condition False. Printing out the variable that
changes can help pinpoint the issue.

while Loop Flow Chart

Unlike an 1f statement, awhile
loop flow chart needs to include a
transition from the while loop's
body back to itself.

- False

|
i=1 | v
. . |
while 1 < 5: | print("done")
. . |
r.)r‘ln’.c(l) ol
1 =1 + 1 |

print("done") loop body

10

You Do: Trace the Program

You do: if we slightly change the code from the previous program, what
happens to the program?

i=1

while 1 < 5:
i1 =1+ 1 # moved up one line
print(i)

print("done")

11

Loop Control Variables

Now that we know the basics of how loops work, we can start to write
while loops that produce specific repeated actions.

First, we need to identify which parts of the repeated action must
change in each iteration. This changing part will be created by the loop
control variable, which is updated in the loop body.

To use this variable, we'll need to give it a start value, an update
action, and a continuing condition. All three need to be coordinated

for the loop to work correctly.

In our print 1-to-10 example, our variable is the number being printed. We
want to start the variable at 1 and continue while the variable is less than or
equal to 10. Set num = 1 at the beginning of the loop and continue looping
while num <= 10.The loop ends when numis 11.

Each printed number is one larger from the previous, so the update should
set the variable to the next number (num = num + 1) in each iteration.

num = 1
while num <= 10:
print(num)

num = num + 1

14

How would we change the program if we wanted to count backwards instead? The loop
control variable is the same (the number being printed), but its components change.

Set num = 10 at the beginning of the loop and continue looping while num >= 1.The
loop ends when num is O.

Each printed number is one smaller from the previous, so the update should set the
variable to the next number (num = num - 1)in each iteration.

num = 10
while num >= 1:
print(num)

num = num - 1

15

You do: your task is to print the even numbers from 2 to 100.

What is your loop control variable? What is its start value, continuing
condition, and update action?

Once you've determined what these values are, use them to write a
short program that does this task.

Loops in Algorithms

Suppose we want to add the numbers
from 1 to 10.

We need to keep track of two different
numbers:

* the current number we're adding
* the current sum

Both numbers need to be updated inside
the loop body, but only one (the current
number) needs to be checked in the
condition.

result = 0
num = 1
while num <= 10:
result = result + num
num = num + 1
print(result)

Which is the loop control variable?

18

Tracing Loops

Sometimes it gets difficult to mmm

understand what a program is doing ~ pre-loop 0 1
when that program uses loops. It can be , _
helpful to manually trace through the - terationl 1 2
values in the variables at each step of : :
. : : : teration 2 3 3

the code, including each iteration of the reration
loop. iteration 3 6 4
result = 0 . = Iteration4 10 5
num = 1 iteration 5 15 6
while num <= 7: aration € - .

result = result + num 'teration

num = num + 1 — iteration7 28 8
print(result)
. ~ post-loop 28 8

19

Update Order

When updating multiple variables in a
loop, order matters. If we update num
before we update result, it changes
the value held in result.

result = 0
Qum=1

while num <= 7;
num = num + 1
result = result + num

print(result)

Note: Python checks the condition only
at the start of the loop; it doesn't exit
the loop as soon as num becomes 8.

A 4

A 4

pre-loop

iteration 1
iteration 2
iteration 3
iteration 4
iteration 5
iteration 6
iteration 7

post-loop

o U1 N O

20
27
35
35

O 00 N o u B~ W N

20

We showed previously how we can nest conditionals in row = 0
other conditionals or function definitions. We can do the

same thing with while loops! while row < 5:

if row % 2 ==

For example, let's make ascii art. Write code to produce print ("x-x-x"

the following printed string:

else:
X=-X-X print("-o0-0-")
-0-0- row = row + 1
X-X-X
_O_O_
X-X-X

The loop will iterate over the rows that are printed. The
program decides whether to print the x line or the o line
based on the value of the loop control variable.

If it's even (0, 2, and 4) print x; if it's odd (1 and 3) print o.

21

We can also nest loops inside of function
definitions.

If we return inside a loop, Python immediately
exits the function- no further iterations will run.

For example, if we want to check whether a
multiple of factor occurs within a certain
range [start, end],wecanreturn True as
soon as we find a multiple (inside the loop), or
IFal_;,e if we never find a multiple (outside the
oop).

Normally you return in a conditional nested
inside the loop, not the loop body itself. If you
return directly in the loop, it will exit on the first
iteration!

def multipleInRange(start, end, factor):
i = start
while i <= end:
print(i) # shows loop ends early
if 1 % factor ==
return True
i=1+1

return False

22

Now that we have loops, we can start writing algorithms to solve real-world
problems. For example, we often want to analyze multiple data points while
writing code.

Loops make it possible for us to repeat an action multiple times- that should
make it possible for us to get multiple data points. But how can we receive
that data?

For now, we'll use the input built-in function to repeatedly ask the user for
data. Later we'll learn about a new data type that can store multiple values
in one place.

:fwek():alc]lI inputinside th?. I result = ©
iggﬂts?rgl;nvﬁgaur;gfg%“ tiple value = input("Enter a number, or g to quit:")
process them like a data while value != "g":
stream. .

num = int(value)

| . result = result + num
We'll need to give the user a

way to Signal’lc3 at thﬁy're dobne value = input("Enter a number, or g to quit:")
entering numbers. This can by N

done with a special input, like print("Total sum:", result)
the string "q".

. Note: our loop control variable here is value. It
For example, this code sums starts as a user input, is updated by asking for new

the numbers entered by the . . . L 0
user until they signal an end to input, and continues looping while itis not "q".

the numbers.

24

e Use while loops when reading and writing algorithms to repeat
actions while a certain condition is met

* |dentify start values, continuing conditions, and update actions for
loop control variables

* Translate algorithms from control flow charts to Python code

* Use nesting of statements to create complex control flow

Extra Slides:
Advanced Loops in Algorithms

This content will not be tested, but is interesting to know!

It isn't always obvious how the start values,
continuing conditions, and update actions of a
loop control variable should work. Sometimes
you need to think through an example to make
it clear!

Example: simulate a zombie apocalypse. Every
day, each zombie finds and bites a human,
turning them into a zombie. If we start with just
one zombie, how long does it take for the whole
world (7.5 billion people) to turn into zombies?

We'll need to track and update two variables-
one for the number of zombies, one for the
number of days passed.

Loop control variable: # of zombies
Start value: 1 zombie

Continuing condition: while the number of
zombies is less than the population

Update action: double the number of zombies
every day

zombieCount = 1

population = 7.5 * 10**9

daysPassed = ©

while zombieCount < population:
daysPassed = daysPassed + 1
zombieCount = zombieCount * 2

print(daysPassed)

27

Example: how would you count the number
of digits in an integer?

One answer: A number abc can be written as:

a*100 + b*10 + c*1
or
a*10% + b*10?! + c*10°

Check each power of 10 until one is bigger
than the number. A separate variable can
track the actual number of digits counted.

Loop control variable: which power of 10 is being
checked

Start value: 1 (10°)

Continuing condition: while the power of 10 isn't
greater than the number

Update action: multiply the power by 10

num = 2021
power =1
digits = ©

while power < num:
digits = digits + 1
power = power * 10

print(digits)

28

Another answer: instead of comparing a
power of 10 to the number, change the
number itself.

For example, to count the digits in abc,
change:

abc ->
ab ->
a

The number of times you can divide the
number by 10 is the number of digits.

Loop control variable: the number itself
Start value: the number's initial value
Continuing condition: while the number is
not yet 0 (no digits)

Update action: divide the number by 10

num = 2021
digits = ©
while num > ©:
digits = digits + 1
num = num // 10
print(digits)

29

	Slide 1: While Loops
	Slide 2: Announcements
	Slide 3: Learning Goals
	Slide 4: Repeating Actions is Annoying
	Slide 5: Loops Repeat Actions Automatically
	Slide 6: While Loops
	Slide 7: While Loops Repeat While a Condition is True
	Slide 8: Conditions Must Eventually Become False
	Slide 9: Infinite Loops Run Forever
	Slide 10: while Loop Flow Chart
	Slide 11: You Do: Trace the Program
	Slide 12: Loop Control Variables
	Slide 13: Use Loop Control Variables to Design Algorithms
	Slide 14: Loop Control Variables - Example
	Slide 15: Loop Control Variables – Counting Backwards
	Slide 16: Activity: Print Even Numbers
	Slide 17: Loops in Algorithms
	Slide 18: Implement Algorithms by Changing Loop Body
	Slide 19: Tracing Loops
	Slide 20: Update Order
	Slide 21: Nesting Conditionals in while Loops
	Slide 22: Nesting while Loops in Functions
	Slide 23: Coding with Multiple Data Points
	Slide 24: Looping with input
	Slide 25: Learning Goals
	Slide 26: Extra Slides: Advanced Loops in Algorithms
	Slide 27: Loop Control Variables – Advanced Example
	Slide 28: Loop Control Variables – Another Example
	Slide 29: Loop Control Variables – Another Example

