
Booleans, Conditionals, and
Errors

15-110 – Monday 01/30

Announcements

• Hw1 was due today

• Check2/Hw2 now released

2

Learning Goals

• Use logical operators on Booleans to compute whether an expression is
True or False

• Use conditionals when reading and writing algorithms that make choices
based on data

• Use nesting of control structures to create complex control flow

• Recognize the different types of errors that can be raised when you run
Python code

3

Logical Operators

4

Booleans are values that can be True or False

In week 1, we learned about the Boolean type, which can be one of
two values: True or False.

Until now, we've made Boolean values by comparing different values,
such as:

x < 5

s == "Hello"

7 >= 2

5

Logical Operations Combine Booleans

We aren't limited to only evaluating a single Boolean comparison! We
can combine Boolean values using logical operations. We'll learn about
three – and, or, and not.

Combining Boolean values will let us check complex requirements
while running code.

6

and Operation Checks Both

The and operation takes two
Boolean values and evaluates to
True if both values are True. In
other words, it evaluates to False if
either value is False.

We use and when we want to
require that both conditions be met
at the same time.

Example:

(x >= 0) and (x < 10)

a b a and b

True True True

True False False

False True False

False False False

7

or Operation Checks Either

The or operation takes two Boolean
values and evaluates to True if either
value is True. In other words, it only
evaluates to False if both values are
False.

We use or when there are multiple
valid conditions to choose from.

Example:

a b a or b

True True True

True False True

False True True

False False False

8

(day == "Saturday") or (day == "Sunday")

not Operation Reverses Result

Finally, the not operation takes a single
Boolean value and switches it to the
opposite value (negates it). not True
becomes False, and not False
becomes True.

We use not to switch the result of a
Boolean expression. For example, not
(x < 5) is the same as x >= 5.

Example:

not (x == 0)

a not a

True False

False True

9

Activity: Guess the Result

If x = 10, what will each of the following expressions evaluate to?

x < 25 or x > 15

not (x > 5 and x <= 10)

(x > 5) or ((x**2 > 50) and (x == 20))

10

Conditionals

11

Conditionals Make Decisions

With Booleans, we can make a new type of code called a conditional.
Conditionals are a form of a control structure – they let us change the
direction of the code based on the value that we provide.

To write a conditional (if statement), we use the following structure:

if <BooleanExpression>:

<bodyIfTrue>

Note that, like a function definition, the top line of the if statement ends
with a colon, and the body of the if statement is indented. The body must
have at least one line and can have as many more lines as it needs.

12

Flow Charts Show Code Choices

We'll use a flow chart to demonstrate how Python executes an if
statement based on the values provided.

print("hello")

if x < 10:

print("wahoo!")

print("goodbye")

wahoo! is only printed if x is less
than 10. But hello and goodbye
are always printed.

13

print
'hello'

print
'wahoo!'

print
'goodbye'

if x < 10True False

Example: Print Number of Digits

For example, we could use the following code to print whether a
number has one digit or more than one digit:

x = 24

if -10 < x and x < 10:

print("Only one digit")

if x <= -10 or x >= 10:

print("More than one digit")

14

Else Clauses Allow Alternatives

Sometimes we want a program to do one of two alternative actions
based on the condition. In this case, instead of writing two if
statements, we can write a single if statement and add an else.

The else is executed when the Boolean expression is False.

if <BooleanExpression>:

<bodyIfTrue>

else:

<bodyIfFalse>

15

}
}

if clause

else clause

Updated Flow Chart Example

print("hello")

if x < 10:

print("wahoo!")

else:

print("ruh roh")

print("goodbye")

16

print
'hello'

print
'wahoo!'

print
'goodbye'

if x < 10

print
'ruh roh'

True False

Revised Example: Print Number of Digits

Using an else statement makes our earlier code much easier to write
and understand!

x = 24

if -10 < x and x < 10:

print("Only one digit")

else:

print("More than one digit")

17

Activity: Conditional Prediction

Prediction Exercise: What will the following code print?

x = 5
if x > 10:

print("Up high!")
else:

print("Down low!")

Question: Can we change the program state to print the other string instead?

Question: Can we change the state to make the if/else statement print out both
statements?

18

Elif Implements Multiple Alternatives

Finally, we can use elif statements to add alternatives with their
own conditions to if statements. An elif is like an if, except that
it is checked only if all previous conditions evaluate to False.

if <BooleanExpressionA>:
<bodyIfATrue>

elif <BooleanExpressionB>:
<bodyIfAFalseAndBTrue>

else:
<bodyIfBothFalse>

19

Updated Flow Chart Example

print("hello")

if x < 10:

print("wahoo!")

elif x <= 99:

print("meh")

else:

print("ruh roh")

print("goodbye")

20

print
'hello'

print
'wahoo!'

print
'goodbye'

print
'ruh roh'

True False

True False

print
'meh'

if x < 10

if x <= 99

Conditional Statements Join Clauses Together

A conditional statement is a joined group of if, elif, and else. All
conditional statements have:
• Exactly one if clause
• Followed by zero or more elif clauses
• Followed by zero or one else clause(s)

These joined clauses can be considered a single control structure. Only one
clause will have its body executed.

Note that it's impossible to have an else or elif clause by itself, as it would
have no condition to be the alternative to. That means we always need an if
at the beginning.

21

Example: Grade Calculator

Let's write a few lines of code that takes a grade as a number, then
prints the letter grade that corresponds to that number grade.

90+ is an A, 80-90 is a B, 70-80 is a C, 60-70 is a D, and below 60 is an R.

22

Short-Circuit Evaluation

When Python evaluates a logical expression, it acts lazily. It only evaluates
the second part if it needs to. This is called short-circuit evaluation.

When checking x and y, if x is False, the expression can never be True.
Therefore, Python doesn't even evaluate y.

When checking x or y, if x is True, the expression can never be False.
Python doesn't evaluate y.

This is a handy method for keeping errors from happening. For example:

if type(x) == type(y) and x < y:
print("Smaller:", x)

23

Two New Math Operators

When we write algorithms using control structures, we may want to check whether
a number has certain properties (like being even or a multiple of ten). We can do
this using some new operators.

Modulo, or mod (%) finds the remainder when one number is divided by another.
For example, 7 % 4 is equal to 3.

Check if a number is even with x % 2 == 0 .

Integer division, or div (//) divides numbers by rounding down to nearest whole
number. This cuts off any digits after the decimal point.

For example, 7 // 4 is equal to 1, not 1.75.

Cut off the last digit of a number with x // 10 .
24

Nesting Control Structures

25

Nesting Creates More Complex Control Flow

Now that we've learned more about control structures, let's talk about
how we can put if statements inside of if statements.

In general, we'll be able to nest control structures inside of other
control structures. This can currently be done with conditional
statements and function definitions.

In program syntax, we demonstrate that a control structure is nested by
indenting the code so that it's in the outer control structure's body.

26

Example: Car rental program

Consider code that determines if a person can
rent a car based on their age (are they at least
26) and whether they have a driver's license.

We can use one if statement to check their age,
then a second (nested inside the first) to check
the license. We'll only print 'Rental Approved' if
both if conditions evaluate to True.

if age >= 26:
if license == True:

print("Rental Approved")
else:

print("Rental Denied")
else:

print("Rental Denied")

27

print
'Rental Approved'

print
'Rental Denied'

print
'Rental Denied'

True False

True Falseif license == True

if age >= 26

Note that each else is paired with
the if at the same indentation level.

Alternative Car Rental Code

In the code below, we accomplish the
same result with the and operation.

This won't always work, though – it
depends on how many different results
you want.

if age >= 26 and license == True:

print("Rental Approved")

else:

print("Rental Denied")

28

print
'Rental Approved'

print
'Rental Denied'

True False
if age >= 26 and
license == True

Nesting Conditionals in Functions

When we nest a conditional inside a function definition, we can return
values early instead of only returning on the last line. Returning early is fine
as long as we ensure every possible path the function can take will
eventually return a value.

A function will always end as soon as it reaches a return statement, even if
more lines of code follow it. For example, the following function will not
crash when n is zero.

def findAverage(total, n):
if n <= 0:

return -1 # error code
return total / n

30

Python Errors

32

Syntax Errors Occur due to Bad Syntax

When Python executes your code, it first has to break your text down into tokens,
then structure those tokens into a format that the computer can execute.

The programming language's syntax is a set of rules for how code instructions
should be written. When syntax is correct, Python can tokenize and structure code
without a problem.

If the interpreter runs into an error while tokenizing or structuring, it calls that a
syntax error. In other words, you get a syntax error when the code you provide
does not follow the rules of the Python language's syntax, either because an invalid
token is used or because tokens are structured in a way Python cannot understand.

A syntax error means that none of your code will run, because the syntax can't be
parsed. Syntax errors should be fixed as quickly as possible!

33

Examples of Syntax Errors

Most syntax errors are called SyntaxError, which make them easy to spot. For example:

x = @ # @ is not a valid token
4 + 5 = x # the parser stops because it doesn't follow the rules

There are two special types of syntax errors: IndentationError and incomplete error.

x = 4 # IndentationError: whitespace has meaning

print(4 + 5 # Incomplete Error: always close parentheses/quotes

34

Execution Errors are Runtime Errors

After Python tokenizes and structures the code, the interpreter runs
through the control flow of the program line-by-line.

If an error occurs as the code is being executed, it's called a runtime
error. Everything that happened before that error will execute just fine,
but everything afterwards will not run.

Runtime errors have many different names in Python. Each name says
something about what kind of error occurred, so reading the name and
text can give you additional information about what went wrong.

35

Examples of Runtime Errors

print(Hello) # NameError: used a missing variable

print("2" + 3) # TypeError: illegal operation on types

x = 5 / 0 # ZeroDivisionError: can't divide by zero

We'll see more types of runtime errors as we learn more Python syntax.

36

Syntax vs Runtime

What's the difference between syntax and runtime errors?

Syntax errors: Python cannot correctly parse the syntax of the text, so none of the
code will run.
• Example: saying "I take the snarkledoo to work". Snarkledoo is not a word, so the

sentence doesn't parse.

• Another example: saying "bus I work to the take". The words are all valid but not
in the right order, so the sentence doesn't parse.

Runtime errors: Python parses the code and starts to run, but gets to a point where
the code cannot be computed. Anything after the non-working code will not run.

• Example: saying "I go to work from Monday to Friday. I take the giraffe to work. I
get a hot chocolate before starting the day." All sentences parse. The first
sentence runs fine, but the second would cause a runtime error (it doesn't make
sense), so the third would not be processed.

37

Other Errors are Logical Errors

If we manage to run through Python code completely, does that mean
it's correct?

Not necessarily! Logical errors can occur if code runs but produces a
result that was not what the user intended. The computer can't catch
logical errors because the computer doesn't know what we intend to
do.

To catch logical errors, you usually need to test your code. We'll do this
mainly with assert statements.

38

assert Statements Check Correctness

An assert statement takes a Boolean expression. If the expression
evaluates to True, the statement does nothing. If it evaluates to False, the
program crashes.

We use assert statements to check for logical errors by testing whether the
output of a function call is equal to what we expect it to be. If the result is
not correct, you get an AssertionError.

assert((2 + 2) == 4) # True, so it does nothing

assert(findAverage(20, 4) == 5) # is the function right?

39

Examples of Logical Errors

print("2 + 2 = ", 5) # no error message, but wrong!

def double(x):

return x + 2 # adding instead of multiplying

assert(double(3) == 6) # 6 is the intended result

Logical errors are the hardest to find and fix. You'll learn more about how to debug them in
recitation this week.

40

Demo: Programming Starter File

Starting in Check2, the programming starter files will contain test cases that use
assert statements.

To run all the tests, click the Run current script button. This will run the whole file
and call testAll() at the bottom, which will run every test function.

If you want to skip forward, you can turn off the tests for a single problem by
commenting out the call to testProblem in the testAll definition body.
Alternatively, if you want to test a single problem, you can run the file, then run
testProblem() in the interpreter to automatically see the results for just that
problem.

Note that for some tests (like runInteractiveProgram) you need to check the
results yourself! Read the test output to make sure your work is correct.

41

Learning Goals

• Use logical operators on Booleans to compute whether an expression is
True or False

• Use conditionals when reading and writing algorithms that make choices
based on data

• Use nesting of control structures to create complex control flow

• Recognize the different types of errors that can be raised when you run
Python code

42

	Slide 1: Booleans, Conditionals, and Errors
	Slide 2: Announcements
	Slide 3: Learning Goals
	Slide 4: Logical Operators
	Slide 5: Booleans are values that can be True or False
	Slide 6: Logical Operations Combine Booleans
	Slide 7: and Operation Checks Both
	Slide 8: or Operation Checks Either
	Slide 9: not Operation Reverses Result
	Slide 10: Activity: Guess the Result
	Slide 11: Conditionals
	Slide 12: Conditionals Make Decisions
	Slide 13: Flow Charts Show Code Choices
	Slide 14: Example: Print Number of Digits
	Slide 15: Else Clauses Allow Alternatives
	Slide 16: Updated Flow Chart Example
	Slide 17: Revised Example: Print Number of Digits
	Slide 18: Activity: Conditional Prediction
	Slide 19: Elif Implements Multiple Alternatives
	Slide 20: Updated Flow Chart Example
	Slide 21: Conditional Statements Join Clauses Together
	Slide 22: Example: Grade Calculator
	Slide 23: Short-Circuit Evaluation
	Slide 24: Two New Math Operators
	Slide 25: Nesting Control Structures
	Slide 26: Nesting Creates More Complex Control Flow
	Slide 27: Example: Car rental program
	Slide 28: Alternative Car Rental Code
	Slide 30: Nesting Conditionals in Functions
	Slide 32: Python Errors
	Slide 33: Syntax Errors Occur due to Bad Syntax
	Slide 34: Examples of Syntax Errors
	Slide 35: Execution Errors are Runtime Errors
	Slide 36: Examples of Runtime Errors
	Slide 37: Syntax vs Runtime
	Slide 38: Other Errors are Logical Errors
	Slide 39: assert Statements Check Correctness
	Slide 40: Examples of Logical Errors
	Slide 41: Demo: Programming Starter File
	Slide 42: Learning Goals

