
Function Definitions
15-110 – Friday 01/27

Announcements

• Hw1 is due Monday at noon

2

Learning Objectives

• Use function definitions when reading and writing algorithms to
implement procedures that can be repeated on different inputs

• Recognize the difference between local and global scope

• Trace function calls to understand how Python keeps track of nested
function calls

3

Function Definitions

4

Function Definitions Run on Abstract Input

Now that we have all the individual components of functions, we can
write new function definitions ourselves.

To write a function, you need to determine what algorithm you want to
implement. You'll convert that algorithm into code that runs on
abstract input.

5

Core Function Definition

Let's start with a simple
function that has no explicit
input or output; instead, it has
a side effect (printed lines).

def helloWorld():

print("Hello World!")

print("How are you?")

helloWorld()

def is how Python knows the following code is a
function definition

helloWorld is the name of the function. This is
how we'll call it.

The colon at the end of the first line, and the
indentation at the beginning of the second and third,
tell Python that we're in the body of the function.

The body holds the algorithm. When the indentation
stops, the function is done.

In this example, the last line calls the function we've
written.

6

Parameters are Abstracted Arguments

To add input to the function definition, add parameters inside the parentheses next
to the name.

These parameters are variables that are not given initial values. Their initial values
will be provided by the arguments given each time the function is called.

def hello(name):
print("Hello, " + name + "!")
print("How are you?")

hello("Stella")
hello("Dippy")

7

Return Provides the Returned Value Output

To make our function have a non-None output, we need to have a return
statement. This statement specifies the value that should be substituted for
the function call when the function is called on a specific input.

def makeHello(name):
return "Hello, " + name + "! How are you?"

s = makeHello("Scotty")

As soon as Python returns a value, it exits the function. Python ignores any
lines of code after a return statement.

8

Activity: Write a Function

You do: write a function convertToQuarters that takes a number of
dollars and converts it into quarters, returning the number of quarters.

For example, if you call convertToQuarters on 2 ($2), the function
should return 8 (8 quarters).

9

Control Flow

Writing code with function definitions introduces a new concept to our
programs – control flow. This is the order that statements are executed in as
we run a program.

Before, all our programs ran sequentially from the first statement to the last.
But with function definitions, Python will need to redirect the control flow
whenever we call a function that we've defined.

Control flow is an incredibly useful tool, but it also makes it more difficult to
read and comprehend a program. In particular, when you read code with a
function definition, you have to keep in mind that that definition will not
influence the program until it is called.

10

Example Code

For example, what will be printed when we run the following code?

def test(x):

print("A:", x)

return x + 5

y = 2

print("B:", y)

z = test(y + 1)

We do not enter the function until it is called. That means B is printed before A, even
though its line occurs further down in the code!

11

Interpreter:
B: 2
A: 3

Activity: Analyze the function

You do: what are the arguments and returned value of the highlighted
function call, given the definition? What will it print?

def distance(x1, y1, x2, y2):
xPart = (x2 - x1)**2
yPart = (y2 - y1)**2
print("Partial Work:", xPart, yPart)
return (xPart + yPart) ** 0.5

print("Begin!")
result = distance(0, 0, 3, 4)
print("Result:", result)

13

Scope

14

Variables Have Different Scopes

All the work done in a function is only accessible in that function. In other
words, if we make a variable in a function, the outer program can't access it;
the only way to transmit its value is to return it.

def addItUp(x, y, z):
answer = x + y
answer = answer + z

print(answer) # NameError!

The variable answer has a local scope and is accessible only within the
function addItUp. Note that the parameters x, y, and z also have local
scope, as they must be assigned values in a function call before we can use
them.

15

Everything Can Access Global Variables

On the other hand, if a function is told to use a variable it hasn't defined, the function
automatically looks in the global scope (outside the function at the top level) to see if the
variable exists there.

x = 5

def test():
y = x + 2
return y

print(test() - x)

If you change a global variable in a function, that's a side effect! It's unlikely that you'll
want to use this, but good to know for debugging.

16

It's like a one-way mirror. Functions
can see global variables, but global-
level code cannot see local variables.

Scope is Like Names

You can think of the scope of a variable
as being like its last name. For example,
consider the following code:

x = "bar"

def test():

x = "foo"

print("A", x)

test()

print("B", x)

x exists in both the local and the global
scope, but the two x variables are
separate and have different values.

Analogy: knowing two people both
named Andrew. They have the same
first name, but different last names.

In the code above, the last name of the
function's x would be test, while the last
name of the top-level x would be global.

In general, it's best to keep local/global
variable names different to avoid
confusion.

17

Activity: Local or Global?

Which variables in the following code snippet are global? Which are local?

For the local variables, which function can see them?

name = "Farnam"

def greet(day):
punctuation = "!"
print("Hello, " + name + punctuation)
print("Today is " + day + punctuation)

def leave():
punctuation = "."
print("Goodbye, " + name + punctuation)

greet("Monday")
leave()

18

Function Call Tracing

19

Function Calls in Function Definitions

It isn't too hard to trace a function call when it
goes through a single definition, but it gets a lot
harder when that definition calls another
function.

When the code to the right calls the function
outer, outer will run a bit of code, then call the
function inner.

Python needs to keep track of which variables are
in scope at any given point, and where returned
values should be sent.

def outer(x):

y = x / 2

print("Outer y:", y)
return inner(y) + 3

def inner(x):

y = x + 1
print("Inner y:", y)

return y

print(outer(4))

20

Interpreter:

Tracing the Code

When Python runs through this code, it
adds outer to its state, then it adds
inner.

def outer(x):
y = x / 2
print("outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("inner y:", y)
return y

print(outer(4))

21

outer function
inner function

Tracing the Code

When it reaches the last line, it must call
outer to evaluate the expression.

The computer puts a 'bookmark' on the line
it was on so it won't lose its place.

def outer(x):
y = x / 2
print("outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("inner y:", y)
return y

print(outer(4))

22

print(outer(4))

Interpreter:

outer function
inner function

function call

Tracing the Code

Python traces through the outer function
normally, keeping track of the local state,
until it reaches the call to inner.

def outer(x):
y = x / 2
print("outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("inner y:", y)
return y

print(outer(4))

23

print(outer(4))

x = 4
y = 4 / 2 = 2.0

outer function
inner function

Interpreter:
outer y: 2.0
Interpreter:

Tracing the Code

Once again, Python leaves a 'bookmark' at
its current location, then moves to the
inner function to set up a new local state.

def outer(x):
y = x / 2
print("outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("inner y:", y)
return y

print(outer(4))

24

print(outer(4))

return inner(2.0) + 3

Interpreter:
outer y: 2.0

x = 4
y = 4 / 2 = 2.0

outer function
inner function

function call

Tracing the Code

Python can fully execute inner without
calling another function.

def outer(x):
y = x / 2
print("outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("inner y:", y)
return y

print(outer(4))

25

Interpreter:
outer y: 2.0

print(outer(4))

return inner(2.0) + 3
x = 4
y = 4 / 2 = 2.0

Interpreter:
outer y: 2.0
inner y: 3.0

outer function
inner function

x = 2.0
y = 2.0 + 1 = 3.0

Tracing the Code

When Python reaches the return statement
of inner, it returns 3.0 to the function
that previously called it, outer, by checking
the bookmark.

def outer(x):
y = x / 2
print("outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("inner y:", y)
return y

print(outer(4))

26

print(outer(4))

return inner(2.0) + 3
x = 4
y = 4 / 2 = 2.0

return 3.0

outer function
inner function

x = 2.0
y = 2.0 + 1 = 3.0

return value

Interpreter:
outer y: 2.0
inner y: 3.0

return inner(2.0) + 3

Tracing the Code

When the value 3.0 is returned, it takes
the place of the function call expression.

Now Python can finish running the outer
function.

def outer(x):
y = x / 2
print("outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("inner y:", y)
return y

print(outer(4))

27

print(outer(4))

return 3.0 + 3
x = 4
y = 4 / 2 = 2.0

outer function
inner function

Interpreter:
outer y: 2.0
inner y: 3.0

return 3.0 + 3

Tracing the Code

When outer finishes, it returns 6.0 to the
next bookmarked function, the original call.

def outer(x):
y = x / 2
print("outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("inner y:", y)
return y

print(outer(4))

28

print(outer(4))

return 6.0
x = 4
y = 4 / 2 = 2.0

outer function
inner function

Interpreter:
outer y: 2.0
inner y: 3.0

return value

print(outer(4))

Interpreter:
outer y: 2.0
inner y: 3.0Tracing the Code

6.0 takes the place of outer(4), the value
is printed, and the code is done!

def outer(x):
y = x / 2
print("outer y:", y)
return inner(y) + 3

def inner(x):
y = x + 1
print("inner y:", y)
return y

print(outer(4))

29

print(6.0)
outer function
inner function

Interpreter:
outer y: 2.0
inner y: 3.0
6.0

Analogy: Baking with Bookmarks

You can think of the function call tracing like a
series of bookmarks that help you keep your
place as you trace the code.

For example, perhaps I'm following a recipe to
make an apple tart. One step of the recipe tells
me to make a frangipane (custard), but I don't
know how to do that!

I can put a bookmark on my current step and
find another cookbook with a recipe for making
frangipane, then start following that recipe.

Maybe that recipe tells me to cream the butter
and sugar, and I have to look in yet another
cookbook to learn how to do that. Each new
recipe is another function call.

30

makeAppleTart(ingredients)

makeFrangipane(subIngredients)

creamButterSugar(butter, sugar)

calls

calls

Function Calls in Error Messages

Function call 'bookmarks' will show up
naturally in your code whenever you
encounter an error message.

The lines of the error message show
you exactly which function calls led to
the location where the error occurred.

If we insert an error into the middle of
the code, you can see how each
'bookmark' is listed out.

def outer(x):
y = x / 2
return inner(y) + 3

def inner(a):
b = a + 1
print(oops) # will cause an error
return b

print(outer(4))

31

Traceback (most recent call last):
File "C:\Users\river\Downloads\example.py", line 10, in <module>

print(outer(4))
File "C:\Users\river\Downloads\example.py", line 3, in outer

return inner(y) + 3
File "C:\Users\river\Downloads\example.py", line 7, in inner

print(oops) # will cause an error
NameError: name 'oops' is not defined

[if time] Activity: Trace the Function Calls

You do: given the code to the right,
trace through the execution of the code
and the function calls.

It can be helpful to jot down the current
variable values as well, so you don't
have to hold them all in your head.

What will be printed at the end?

def calculateTip(cost):

tipRate = 0.2

return cost * tipRate

def payForMeal(cash, cost):

cost = cost + calculateTip(cost)

cash = cash - cost

print("Thanks!")

return cash

wallet = 20.00

wallet = payForMeal(wallet, 8.00)

print("Money remaining:", wallet)

32

Learning Objectives

• Use function definitions when reading and writing algorithms to
implement procedures that can be repeated on different inputs

• Recognize the difference between local and global scope

• Trace function calls to understand how Python keeps track of nested
function calls

33

	Slide 1: Function Definitions
	Slide 2: Announcements
	Slide 3: Learning Objectives
	Slide 4: Function Definitions
	Slide 5: Function Definitions Run on Abstract Input
	Slide 6: Core Function Definition
	Slide 7: Parameters are Abstracted Arguments
	Slide 8: Return Provides the Returned Value Output
	Slide 9: Activity: Write a Function
	Slide 10: Control Flow
	Slide 11: Example Code
	Slide 13: Activity: Analyze the function
	Slide 14: Scope
	Slide 15: Variables Have Different Scopes
	Slide 16: Everything Can Access Global Variables
	Slide 17: Scope is Like Names
	Slide 18: Activity: Local or Global?
	Slide 19: Function Call Tracing
	Slide 20: Function Calls in Function Definitions
	Slide 21: Tracing the Code
	Slide 22: Tracing the Code
	Slide 23: Tracing the Code
	Slide 24: Tracing the Code
	Slide 25: Tracing the Code
	Slide 26: Tracing the Code
	Slide 27: Tracing the Code
	Slide 28: Tracing the Code
	Slide 29: Tracing the Code
	Slide 30: Analogy: Baking with Bookmarks
	Slide 31: Function Calls in Error Messages
	Slide 32: [if time] Activity: Trace the Function Calls
	Slide 33: Learning Objectives

