Simulation —
Model, View, Controller

15-110 — Wednesday 04/05

Badam Kulfi —an almond Indian cold desert

Bavarian Chocolate — yum

Berry — mixed berries | assume? nice!

Brownie Brittle — | like soft brownies personally, but you do you

Cajeta — like caramel or dulce de leche, but silkier

Cheese - it's a real thing from the Philippines!

Cinnamon — I've seen cinnamon apple, cinnamon bun, and cinnamon cheesecake, but never just cinnamon!
Coffee Cookies and Cream — both parts are common, but not together!
Cookies and S'mores — see right above

Durian — now | want to try this!

Eggnog — delicious

Lil' Blue Panda — sugar cookie flavored blue and white ice cream
Mocha Almond Fudge — nice combo

Oat of this Swirled — like cinnamon oatmeal cookies

Peanut Butter Chocolate Chip — delicious

e Tutorial: how to work with Hw6 starter files

* Represent the state of a system in a model by identifying components
and rules

* Visualize a model using graphics

* Update a model over time based on rules

Simulations and Models

A simulation is an automated
imitation of a real-world event.

By running simulations on
different starting inputs, and by
interacting with them while they
run, we can test how the event
will change under different
circumstances and learn
interesting things.

Simulation is used across many different fields, including training
people, testing designs, and making predictions (like whether a flight
plan will work, or how a pandemic will evolve over time).

Free-for-all Attempted quarantine

y v

Simulations share a lot in common with real world experiments. Major
differences include:

* Experiments run in real time; simulations can be sped up, slowed
down, or paused.

* Experiments can be expensive; simulations are fairly cheap.

* Experiments include all possible factors; simulations only include
factors we program in.

Example Simulations

You can explore simulations across a variety of fields on the site
NetLogo, which is focused entirely on modeling and simulation.

e Ant colony movements
Flocking behavior

* Gravitational forces
Climate change

* Fire spreading

* Rumor mills

http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Biology/Ants.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Biology/Flocking.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Chemistry%20&%20Physics/Mechanics/Unverified/N-Bodies.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Earth%20Science/Climate%20Change.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Earth%20Science/Fire.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Social%20Science/Rumor%20Mill.nlogo

How do we program a simulation? You need to design a good model,
which will mimic the part of the real world you want to study. The
simulation showcases how the system represented by the model
changes over time, or how it changes based on events.

Models are composed of two parts:

* The components of the system (information that describes the world at an
exact moment).

* The rules of the system (how the components should change as time
passes/events occur).

Components are like variables, and rules are like functions!

Problem: how much ice cream can an ice cream shop expect to sell on
a given day?

Model Components: price; temperature; number of flavors available

Model Rules: some number of people buy ice cream every day; when it
is hotter outside, people buy more ice cream; when prices go up,
demand goes down; an increased number of flavors increases the
number of people who buy ice cream (to a certain point)

Problem: we want to track how many birds are in a local area over the
course of a year, to see how the population changes.

You do: What are the components of this model? What are the rules?

Simulations are powerful, but they can also be suspect to error and bias,
because the results are influenced by what is included in the model.

Example: you could build a fancy simulation of an amusement park to test
different park configurations and estimate how much profit could be
expected from each arrangement. But if your model doesn't include a
variable for weather, the results may all be overly-optimistic.

Try investigating any simulations you might interact with to see what biases
and errors they might include.

Coding a Simulation

We'll implement simulations in this class graphically, like in NetLogo,
using Tkinter.

We'll start with very abstract simulations (to keep the code simple) and
will show how to program more complex simulations next time.

Our simulation code will be composed of three parts:

* A model which stores the core components in a shared data structure and
implements core rules in functions

 Time and event controllers which tell the model when to run rules that
update the components

* A graphical view which repeatedly displays the current state of the model

Model, View, Controller

16

We'll represent the model's components in code in a dictionary called data. The keys will
take the place of variable names and the values will be the actual component values.

For example, to store information about a circle that represents some part of the model,

we could set:

datal|
data[
datal[

S5

200
200
50

Storing all the components in one structure lets us pass the same structure around to all
the functions we write using aliasing. This will let us update components in a rule function,
then display the same (updated) data in a separate view function.

17

To display the whole model, we'll use Tkinter to draw graphics that represent the
components visually. By referring to component values in data in the view function, we
can make graphics that change alongside the model.

For example, if data = { "x" : 200, "y" : 200, "r" : 50 },we coulddraw a
circle with:

canvas.create oval(data["x"] - data["r"], data["y"] - data["r"],
data["x"] + data["r"], data["y"] + data["r"])

We'll erase and re-draw the graphics window every time the rules of the simulation run. If

we chahr?ge the components a little bit at a time, this makes the display appear to update
smoothly.

18

We can run the simulation rules in two ways: either over a period of time or
when events happen (or both!). We'll address the time controller first, then
the event controller in a later lecture.

The time controller will create a time loop and call a function that
implements the model's rules within that time loop at equal time intervals.
By calling this function continuously, we can simulate time passing.

If the model's rules change the model's components in data, this will
simulate the model changing over time!

data["x"] = data["x"] + 5

We'll use a new simulation framework that you can find linked on the course
website to support our simulations. This framework manages the controllers
for you; you just need to focus on implementing the model and the view. To
do this, update three functions to build a simple simulation:

* makeModel (data) makes the original components. data is the model dictionary

* runRules(data, call) runsthe rules to update data. The integer call
represents the number of times runRules has been called

* makeView(data, canvas) displays the model. canvas is a Tkinter canvas

This is different from the code we're used to because the functions work
together instead of running in a sequential order.

20

The starter code we provide helps the simulation run smoothly. You don't need to
understand this code, but here's more details if you're interested.

The time controller in the function timelLoop calls our function runRules, then calls
makeView to update the view. It simulates a time loop with the built-in function
canvas.after. This function calls timelLoop again {I)ike recursion) but pauses before
making the call. That lets us recurse infinitely without freezing the window.

The function runSimulation(width, height, timeRate) sets up this time loop.
You can speed up/slow down the simulation by changing timeRate in the function call.

You can also change the window size by changing width and height in the function call
arguments.

21

Let's start with a simple simulation. Say we want to draw a circle and have
the color of the circle change over time.

The components should hold any values that might change. In this case,
that's the color of the circle. Set an initial component value in makeModel.

The rules should describe how the model changes over time. In this case, we
change the color in the shared dictionary with every call to runRules.

The view should draw a circle in the middle of the window and set its color
based on the color in the model. This is done in makeView.

Simple Example Code

def

def

def

makeModel (data):
put variables in data here
data["color"] = "red"

makeView(data, canvas):

(200, 200) is center point

make sure to reference data for the parts that change!

canvas.create oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,
fill=data["color"])

runRules(data, call):

import random

Let's pick a color randomly!

newColor = random.choice(["red", "orange", "yellow",
"green", "blue", "purple"])

data["color"] = newColor # update data to change the model

23

You do: open the simulation starter code and copy in the functions
from the previous slide. Run the code to make sure it works, then

modify the code in the three functions so that the circle also grows
larger as time passes.

Hint: you'll need to add one component to the model, the thing that is

changing. You should change that component in runRules and access
it while drawing the circle in makeView.

Throughout the process of building simulations, we've structured code
based on the model, view, controller framework.

Model: manages the components and rules of the thing we're
simulating

View: displays the data in the model so that the user can look at it

Controller: manages time loops and events that provide changes to the
model

* Represent the state of a system in a model by identifying components
and rules

* Visualize a model using graphics

* Update a model over time based on rules

	Slide 1: Simulation – Model, View, Controller
	Slide 2: New Ice Creams I Learned About
	Slide 3: Announcements
	Slide 4: Learning Goals
	Slide 5: Simulations and Models
	Slide 6: Simulations are Imitations of Real Life
	Slide 7: Examples of Simulations
	Slide 8: Simulations vs. Real-world Experiments
	Slide 9: Example Simulations
	Slide 10: Simulations Run on Models
	Slide 11: Example Model
	Slide 12: Activity: Design a Model
	Slide 13: Important: Simulations Rely on the Model!
	Slide 14: Coding a Simulation
	Slide 15: Simulation Parts in Code
	Slide 16: Model, View, Controller
	Slide 17: Making the Components
	Slide 18: Displaying the Model
	Slide 19: Running the Rules
	Slide 20: Simulation Functions
	Slide 21: Sidebar: Controller Functions – Time Loop
	Slide 22: Simple Example – Color-Changing Ball
	Slide 23: Simple Example Code
	Slide 24: Activity: Make the circle grow
	Slide 25: Summary: Model, View, Controller
	Slide 26: Learning Goals

